InvokeAI/ldm/invoke/generator/txt2img2img.py
2022-11-30 14:54:19 -08:00

179 lines
6.5 KiB
Python

'''
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
'''
import math
import torch
from PIL import Image
from ldm.invoke.generator.base import Generator
from ldm.invoke.generator.omnibus import Omnibus
from ldm.models.diffusion.ddim import DDIMSampler
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # for get_noise()
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,width,height,strength,step_callback=None,**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
uc, c, extra_conditioning_info = conditioning
scale_dim = min(width, height)
scale = 512 / scale_dim
init_width = math.ceil(scale * width / 64) * 64
init_height = math.ceil(scale * height / 64) * 64
@torch.no_grad()
def make_image(x_T):
shape = [
self.latent_channels,
init_height // self.downsampling_factor,
init_width // self.downsampling_factor,
]
sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
#x = self.get_noise(init_width, init_height)
x = x_T
if self.free_gpu_mem and self.model.model.device != self.model.device:
self.model.model.to(self.model.device)
samples, _ = sampler.sample(
batch_size = 1,
S = steps,
x_T = x,
conditioning = c,
shape = shape,
verbose = False,
unconditional_guidance_scale = cfg_scale,
unconditional_conditioning = uc,
eta = ddim_eta,
img_callback = step_callback,
extra_conditioning_info = extra_conditioning_info
)
print(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
# resizing
samples = torch.nn.functional.interpolate(
samples,
size=(height // self.downsampling_factor, width // self.downsampling_factor),
mode="bilinear"
)
t_enc = int(strength * steps)
ddim_sampler = DDIMSampler(self.model, device=self.model.device)
ddim_sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
z_enc = ddim_sampler.stochastic_encode(
samples,
torch.tensor([t_enc]).to(self.model.device),
noise=self.get_noise(width,height,False)
)
# decode it
samples = ddim_sampler.decode(
z_enc,
c,
t_enc,
img_callback = step_callback,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
extra_conditioning_info=extra_conditioning_info,
all_timesteps_count=steps
)
if self.free_gpu_mem:
self.model.model.to("cpu")
return self.sample_to_image(samples)
# in the case of the inpainting model being loaded, the trick of
# providing an interpolated latent doesn't work, so we transiently
# create a 512x512 PIL image, upscale it, and run the inpainting
# over it in img2img mode. Because the inpaing model is so conservative
# it doesn't change the image (much)
def inpaint_make_image(x_T):
omnibus = Omnibus(self.model,self.precision)
result = omnibus.generate(
prompt,
sampler=sampler,
width=init_width,
height=init_height,
step_callback=step_callback,
steps = steps,
cfg_scale = cfg_scale,
ddim_eta = ddim_eta,
conditioning = conditioning,
**kwargs
)
assert result is not None and len(result)>0,'** txt2img failed **'
image = result[0][0]
interpolated_image = image.resize((width,height),resample=Image.Resampling.LANCZOS)
print(kwargs.pop('init_image',None))
result = omnibus.generate(
prompt,
sampler=sampler,
init_image=interpolated_image,
width=width,
height=height,
seed=result[0][1],
step_callback=step_callback,
steps = steps,
cfg_scale = cfg_scale,
ddim_eta = ddim_eta,
conditioning = conditioning,
**kwargs
)
return result[0][0]
if sampler.uses_inpainting_model():
return inpaint_make_image
else:
return make_image
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height,scale = True):
# print(f"Get noise: {width}x{height}")
if scale:
trained_square = 512 * 512
actual_square = width * height
scale = math.sqrt(trained_square / actual_square)
scaled_width = math.ceil(scale * width / 64) * 64
scaled_height = math.ceil(scale * height / 64) * 64
else:
scaled_width = width
scaled_height = height
device = self.model.device
if self.use_mps_noise or device.type == 'mps':
return torch.randn([1,
self.latent_channels,
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor],
device='cpu').to(device)
else:
return torch.randn([1,
self.latent_channels,
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor],
device=device)