mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
434 lines
15 KiB
Python
434 lines
15 KiB
Python
import copy
|
|
from typing import List, Literal, Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from ...backend.model_management import BaseModelType, ModelType, SubModelType
|
|
from .baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
FieldDescriptions,
|
|
InputField,
|
|
Input,
|
|
InvocationContext,
|
|
OutputField,
|
|
UIType,
|
|
tags,
|
|
title,
|
|
)
|
|
|
|
|
|
class ModelInfo(BaseModel):
|
|
model_name: str = Field(description="Info to load submodel")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
model_type: ModelType = Field(description="Info to load submodel")
|
|
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
|
|
|
|
|
|
class LoraInfo(ModelInfo):
|
|
weight: float = Field(description="Lora's weight which to use when apply to model")
|
|
|
|
|
|
class UNetField(BaseModel):
|
|
unet: ModelInfo = Field(description="Info to load unet submodel")
|
|
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
|
|
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
|
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
|
|
|
|
|
class ClipField(BaseModel):
|
|
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
|
|
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
|
|
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
|
|
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
|
|
|
|
|
class VaeField(BaseModel):
|
|
# TODO: better naming?
|
|
vae: ModelInfo = Field(description="Info to load vae submodel")
|
|
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
|
|
|
|
|
class ModelLoaderOutput(BaseInvocationOutput):
|
|
"""Model loader output"""
|
|
|
|
type: Literal["model_loader_output"] = "model_loader_output"
|
|
|
|
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
|
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
|
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
|
|
|
|
|
class MainModelField(BaseModel):
|
|
"""Main model field"""
|
|
|
|
model_name: str = Field(description="Name of the model")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
model_type: ModelType = Field(description="Model Type")
|
|
|
|
|
|
class LoRAModelField(BaseModel):
|
|
"""LoRA model field"""
|
|
|
|
model_name: str = Field(description="Name of the LoRA model")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
|
|
|
|
@title("Main Model")
|
|
@tags("model")
|
|
class MainModelLoaderInvocation(BaseInvocation):
|
|
"""Loads a main model, outputting its submodels."""
|
|
|
|
type: Literal["main_model_loader"] = "main_model_loader"
|
|
|
|
# Inputs
|
|
model: MainModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct)
|
|
# TODO: precision?
|
|
|
|
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
|
|
base_model = self.model.base_model
|
|
model_name = self.model.model_name
|
|
model_type = ModelType.Main
|
|
|
|
# TODO: not found exceptions
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
):
|
|
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
|
|
|
"""
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.Tokenizer,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
|
|
)
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.TextEncoder,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
|
|
)
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.UNet,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
|
|
)
|
|
"""
|
|
|
|
return ModelLoaderOutput(
|
|
unet=UNetField(
|
|
unet=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.UNet,
|
|
),
|
|
scheduler=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.Scheduler,
|
|
),
|
|
loras=[],
|
|
),
|
|
clip=ClipField(
|
|
tokenizer=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.Tokenizer,
|
|
),
|
|
text_encoder=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.TextEncoder,
|
|
),
|
|
loras=[],
|
|
skipped_layers=0,
|
|
),
|
|
vae=VaeField(
|
|
vae=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.Vae,
|
|
),
|
|
),
|
|
)
|
|
|
|
|
|
class LoraLoaderOutput(BaseInvocationOutput):
|
|
"""Model loader output"""
|
|
|
|
# fmt: off
|
|
type: Literal["lora_loader_output"] = "lora_loader_output"
|
|
|
|
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
|
|
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
|
|
# fmt: on
|
|
|
|
|
|
@title("LoRA")
|
|
@tags("lora", "model")
|
|
class LoraLoaderInvocation(BaseInvocation):
|
|
"""Apply selected lora to unet and text_encoder."""
|
|
|
|
type: Literal["lora_loader"] = "lora_loader"
|
|
|
|
# Inputs
|
|
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
|
|
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
|
unet: Optional[UNetField] = InputField(
|
|
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
|
|
)
|
|
clip: Optional[ClipField] = InputField(
|
|
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP"
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
|
|
if self.lora is None:
|
|
raise Exception("No LoRA provided")
|
|
|
|
base_model = self.lora.base_model
|
|
lora_name = self.lora.model_name
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
base_model=base_model,
|
|
model_name=lora_name,
|
|
model_type=ModelType.Lora,
|
|
):
|
|
raise Exception(f"Unkown lora name: {lora_name}!")
|
|
|
|
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
|
|
raise Exception(f'Lora "{lora_name}" already applied to unet')
|
|
|
|
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
|
|
raise Exception(f'Lora "{lora_name}" already applied to clip')
|
|
|
|
output = LoraLoaderOutput()
|
|
|
|
if self.unet is not None:
|
|
output.unet = copy.deepcopy(self.unet)
|
|
output.unet.loras.append(
|
|
LoraInfo(
|
|
base_model=base_model,
|
|
model_name=lora_name,
|
|
model_type=ModelType.Lora,
|
|
submodel=None,
|
|
weight=self.weight,
|
|
)
|
|
)
|
|
|
|
if self.clip is not None:
|
|
output.clip = copy.deepcopy(self.clip)
|
|
output.clip.loras.append(
|
|
LoraInfo(
|
|
base_model=base_model,
|
|
model_name=lora_name,
|
|
model_type=ModelType.Lora,
|
|
submodel=None,
|
|
weight=self.weight,
|
|
)
|
|
)
|
|
|
|
return output
|
|
|
|
|
|
class SDXLLoraLoaderOutput(BaseInvocationOutput):
|
|
"""SDXL LoRA Loader Output"""
|
|
|
|
# fmt: off
|
|
type: Literal["sdxl_lora_loader_output"] = "sdxl_lora_loader_output"
|
|
|
|
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
|
|
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
|
|
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
|
|
# fmt: on
|
|
|
|
|
|
@title("SDXL LoRA")
|
|
@tags("sdxl", "lora", "model")
|
|
class SDXLLoraLoaderInvocation(BaseInvocation):
|
|
"""Apply selected lora to unet and text_encoder."""
|
|
|
|
type: Literal["sdxl_lora_loader"] = "sdxl_lora_loader"
|
|
|
|
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
|
|
weight: float = Field(default=0.75, description=FieldDescriptions.lora_weight)
|
|
unet: Optional[UNetField] = Field(
|
|
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNET"
|
|
)
|
|
clip: Optional[ClipField] = Field(
|
|
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1"
|
|
)
|
|
clip2: Optional[ClipField] = Field(
|
|
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2"
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
|
|
if self.lora is None:
|
|
raise Exception("No LoRA provided")
|
|
|
|
base_model = self.lora.base_model
|
|
lora_name = self.lora.model_name
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
base_model=base_model,
|
|
model_name=lora_name,
|
|
model_type=ModelType.Lora,
|
|
):
|
|
raise Exception(f"Unknown lora name: {lora_name}!")
|
|
|
|
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
|
|
raise Exception(f'Lora "{lora_name}" already applied to unet')
|
|
|
|
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
|
|
raise Exception(f'Lora "{lora_name}" already applied to clip')
|
|
|
|
if self.clip2 is not None and any(lora.model_name == lora_name for lora in self.clip2.loras):
|
|
raise Exception(f'Lora "{lora_name}" already applied to clip2')
|
|
|
|
output = SDXLLoraLoaderOutput()
|
|
|
|
if self.unet is not None:
|
|
output.unet = copy.deepcopy(self.unet)
|
|
output.unet.loras.append(
|
|
LoraInfo(
|
|
base_model=base_model,
|
|
model_name=lora_name,
|
|
model_type=ModelType.Lora,
|
|
submodel=None,
|
|
weight=self.weight,
|
|
)
|
|
)
|
|
|
|
if self.clip is not None:
|
|
output.clip = copy.deepcopy(self.clip)
|
|
output.clip.loras.append(
|
|
LoraInfo(
|
|
base_model=base_model,
|
|
model_name=lora_name,
|
|
model_type=ModelType.Lora,
|
|
submodel=None,
|
|
weight=self.weight,
|
|
)
|
|
)
|
|
|
|
if self.clip2 is not None:
|
|
output.clip2 = copy.deepcopy(self.clip2)
|
|
output.clip2.loras.append(
|
|
LoraInfo(
|
|
base_model=base_model,
|
|
model_name=lora_name,
|
|
model_type=ModelType.Lora,
|
|
submodel=None,
|
|
weight=self.weight,
|
|
)
|
|
)
|
|
|
|
return output
|
|
|
|
|
|
class VAEModelField(BaseModel):
|
|
"""Vae model field"""
|
|
|
|
model_name: str = Field(description="Name of the model")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
|
|
|
|
class VaeLoaderOutput(BaseInvocationOutput):
|
|
"""Model loader output"""
|
|
|
|
type: Literal["vae_loader_output"] = "vae_loader_output"
|
|
|
|
# Outputs
|
|
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
|
|
|
|
|
@title("VAE")
|
|
@tags("vae", "model")
|
|
class VaeLoaderInvocation(BaseInvocation):
|
|
"""Loads a VAE model, outputting a VaeLoaderOutput"""
|
|
|
|
type: Literal["vae_loader"] = "vae_loader"
|
|
|
|
# Inputs
|
|
vae_model: VAEModelField = InputField(
|
|
description=FieldDescriptions.vae_model, input=Input.Direct, ui_type=UIType.VaeModel, title="VAE"
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
|
|
base_model = self.vae_model.base_model
|
|
model_name = self.vae_model.model_name
|
|
model_type = ModelType.Vae
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
base_model=base_model,
|
|
model_name=model_name,
|
|
model_type=model_type,
|
|
):
|
|
raise Exception(f"Unkown vae name: {model_name}!")
|
|
return VaeLoaderOutput(
|
|
vae=VaeField(
|
|
vae=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
)
|
|
)
|
|
)
|
|
|
|
|
|
class SeamlessModeOutput(BaseInvocationOutput):
|
|
"""Modified Seamless Model output"""
|
|
|
|
type: Literal["seamless_output"] = "seamless_output"
|
|
|
|
# Outputs
|
|
unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet")
|
|
vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE")
|
|
|
|
|
|
@title("Seamless")
|
|
@tags("seamless", "model")
|
|
class SeamlessModeInvocation(BaseInvocation):
|
|
"""Applies the seamless transformation to the Model UNet and VAE."""
|
|
|
|
type: Literal["seamless"] = "seamless"
|
|
|
|
# Inputs
|
|
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet")
|
|
vae: VaeField = InputField(description=FieldDescriptions.vae_model, input=Input.Any, title="VAE")
|
|
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
|
|
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")
|
|
|
|
def invoke(self, context: InvocationContext) -> SeamlessModeOutput:
|
|
# Conditionally append 'x' and 'y' based on seamless_x and seamless_y
|
|
unet = copy.deepcopy(self.unet)
|
|
vae = copy.deepcopy(self.vae)
|
|
|
|
seamless_axes_list = []
|
|
|
|
if self.seamless_x:
|
|
seamless_axes_list.append("x")
|
|
if self.seamless_y:
|
|
seamless_axes_list.append("y")
|
|
|
|
unet.seamless_axes = seamless_axes_list
|
|
vae.seamless_axes = seamless_axes_list
|
|
|
|
return SeamlessModeOutput(unet=unet, vae=vae)
|