InvokeAI/invokeai/backend/image_util/dw_openpose/wholebody.py
2024-04-15 09:24:57 -04:00

53 lines
2.2 KiB
Python

# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
# Modified pathing to suit Invoke
import numpy as np
import onnxruntime as ort
from invokeai.app.services.config.config_default import get_config
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.util.devices import TorchDevice
from .onnxdet import inference_detector
from .onnxpose import inference_pose
DWPOSE_MODELS = {
"yolox_l.onnx": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
"dw-ll_ucoco_384.onnx": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
}
config = get_config()
class Wholebody:
def __init__(self, context: InvocationContext):
device = TorchDevice.choose_torch_device()
providers = ["CUDAExecutionProvider"] if device.type == "cuda" else ["CPUExecutionProvider"]
onnx_det = context.models.download_and_cache_ckpt(DWPOSE_MODELS["yolox_l.onnx"])
onnx_pose = context.models.download_and_cache_ckpt(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
def __call__(self, oriImg):
det_result = inference_detector(self.session_det, oriImg)
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1)
mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3]
openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17]
new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2]
return keypoints, scores