mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
8ff507b03b
test prompt: "a cat sitting on a car {a dog sitting on a car}" -W 384 -H 256 -s 10 -S 12346 -A k_euler note that substition of dog for cat is currently hard-coded (ksampler.py line 43-44)
187 lines
7.6 KiB
Python
187 lines
7.6 KiB
Python
import random
|
|
import traceback
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import (LMSDiscreteScheduler)
|
|
from PIL import Image
|
|
from torch import autocast
|
|
from tqdm.auto import tqdm
|
|
|
|
import .ldm.models.diffusion.cross_attention
|
|
|
|
|
|
@torch.no_grad()
|
|
def stablediffusion(
|
|
clip,
|
|
clip_tokenizer,
|
|
device,
|
|
vae,
|
|
unet,
|
|
prompt='',
|
|
prompt_edit=None,
|
|
prompt_edit_token_weights=None,
|
|
prompt_edit_tokens_start=0.0,
|
|
prompt_edit_tokens_end=1.0,
|
|
prompt_edit_spatial_start=0.0,
|
|
prompt_edit_spatial_end=1.0,
|
|
guidance_scale=7.5,
|
|
steps=50,
|
|
seed=None,
|
|
width=512,
|
|
height=512,
|
|
init_image=None,
|
|
init_image_strength=0.5,
|
|
):
|
|
if prompt_edit_token_weights is None:
|
|
prompt_edit_token_weights = []
|
|
# Change size to multiple of 64 to prevent size mismatches inside model
|
|
width = width - width % 64
|
|
height = height - height % 64
|
|
|
|
# If seed is None, randomly select seed from 0 to 2^32-1
|
|
if seed is None: seed = random.randrange(2**32 - 1)
|
|
generator = torch.manual_seed(seed)
|
|
|
|
# Set inference timesteps to scheduler
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule='scaled_linear',
|
|
num_train_timesteps=1000,
|
|
)
|
|
scheduler.set_timesteps(steps)
|
|
|
|
# Preprocess image if it exists (img2img)
|
|
if init_image is not None:
|
|
# Resize and transpose for numpy b h w c -> torch b c h w
|
|
init_image = init_image.resize((width, height), resample=Image.Resampling.LANCZOS)
|
|
init_image = np.array(init_image).astype(np.float32) / 255.0 * 2.0 - 1.0
|
|
init_image = torch.from_numpy(init_image[np.newaxis, ...].transpose(0, 3, 1, 2))
|
|
|
|
# If there is alpha channel, composite alpha for white, as the diffusion
|
|
# model does not support alpha channel
|
|
if init_image.shape[1] > 3:
|
|
init_image = init_image[:, :3] * init_image[:, 3:] + (1 - init_image[:, 3:])
|
|
|
|
# Move image to GPU
|
|
init_image = init_image.to(device)
|
|
|
|
# Encode image
|
|
with autocast(device):
|
|
init_latent = (vae.encode(init_image)
|
|
.latent_dist
|
|
.sample(generator=generator)
|
|
* 0.18215)
|
|
|
|
t_start = steps - int(steps * init_image_strength)
|
|
|
|
else:
|
|
init_latent = torch.zeros((1, unet.in_channels, height // 8, width // 8),
|
|
device=device)
|
|
t_start = 0
|
|
|
|
# Generate random normal noise
|
|
noise = torch.randn(init_latent.shape, generator=generator, device=device)
|
|
latent = scheduler.add_noise(init_latent,
|
|
noise,
|
|
torch.tensor([scheduler.timesteps[t_start]], device=device)
|
|
).to(device)
|
|
|
|
# Process clip
|
|
with autocast(device):
|
|
tokens_uncond = clip_tokenizer('', padding='max_length',
|
|
max_length=clip_tokenizer.model_max_length,
|
|
truncation=True, return_tensors='pt',
|
|
return_overflowing_tokens=True
|
|
)
|
|
embedding_uncond = clip(tokens_uncond.input_ids.to(device)).last_hidden_state
|
|
|
|
tokens_cond = clip_tokenizer(prompt, padding='max_length',
|
|
max_length=clip_tokenizer.model_max_length,
|
|
truncation=True, return_tensors='pt',
|
|
return_overflowing_tokens=True
|
|
)
|
|
embedding_cond = clip(tokens_cond.input_ids.to(device)).last_hidden_state
|
|
|
|
# Process prompt editing
|
|
if prompt_edit is not None:
|
|
tokens_cond_edit = clip_tokenizer(prompt_edit, padding='max_length',
|
|
max_length=clip_tokenizer.model_max_length,
|
|
truncation=True, return_tensors='pt',
|
|
return_overflowing_tokens=True
|
|
)
|
|
embedding_cond_edit = clip(tokens_cond_edit.input_ids.to(device)).last_hidden_state
|
|
|
|
c_a_c.init_attention_edit(tokens_cond, tokens_cond_edit)
|
|
|
|
c_a_c.init_attention_func()
|
|
c_a_c.init_attention_weights(prompt_edit_token_weights)
|
|
|
|
timesteps = scheduler.timesteps[t_start:]
|
|
|
|
for idx, timestep in tqdm(enumerate(timesteps), total=len(timesteps)):
|
|
t_index = t_start + idx
|
|
|
|
latent_model_input = latent
|
|
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)
|
|
|
|
# Predict the unconditional noise residual
|
|
noise_pred_uncond = unet(latent_model_input,
|
|
timestep,
|
|
encoder_hidden_states=embedding_uncond
|
|
).sample
|
|
|
|
# Prepare the Cross-Attention layers
|
|
if prompt_edit is not None:
|
|
c_a_c.save_last_tokens_attention()
|
|
c_a_c.save_last_self_attention()
|
|
else:
|
|
# Use weights on non-edited prompt when edit is None
|
|
c_a_c.use_last_tokens_attention_weights()
|
|
|
|
# Predict the conditional noise residual and save the
|
|
# cross-attention layer activations
|
|
noise_pred_cond = unet(latent_model_input,
|
|
timestep,
|
|
encoder_hidden_states=embedding_cond
|
|
).sample
|
|
|
|
# Edit the Cross-Attention layer activations
|
|
if prompt_edit is not None:
|
|
t_scale = timestep / scheduler.num_train_timesteps
|
|
if (t_scale >= prompt_edit_tokens_start
|
|
and t_scale <= prompt_edit_tokens_end):
|
|
c_a_c.use_last_tokens_attention()
|
|
if (t_scale >= prompt_edit_spatial_start
|
|
and t_scale <= prompt_edit_spatial_end):
|
|
c_a_c.use_last_self_attention()
|
|
|
|
# Use weights on edited prompt
|
|
c_a_c.use_last_tokens_attention_weights()
|
|
|
|
# Predict the edited conditional noise residual using the
|
|
# cross-attention masks
|
|
noise_pred_cond = unet(latent_model_input,
|
|
timestep,
|
|
encoder_hidden_states=embedding_cond_edit
|
|
).sample
|
|
|
|
# Perform guidance
|
|
noise_pred = (noise_pred_uncond + guidance_scale
|
|
* (noise_pred_cond - noise_pred_uncond))
|
|
|
|
latent = scheduler.step(noise_pred,
|
|
t_index,
|
|
latent
|
|
).prev_sample
|
|
|
|
# scale and decode the image latents with vae
|
|
latent = latent / 0.18215
|
|
image = vae.decode(latent.to(vae.dtype)).sample
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
image = (image[0] * 255).round().astype('uint8')
|
|
return Image.fromarray(image)
|