InvokeAI/invokeai/app/api/dependencies.py
psychedelicious 545d8968fd feat(ui): migrated theming to chakra
build(ui): fix husky path

build(ui): fix hmr issue, remove emotion cache

build(ui): clean up package.json

build(ui): update gh action and npm scripts

feat(ui): wip port lightbox to chakra theme

feat(ui): wip use chakra theme tokens

feat(ui): Add status text to main loading spinner

feat(ui): wip chakra theme tweaking

feat(ui): simply iaisimplemenu button

feat(ui): wip chakra theming

feat(ui): Theme Management

feat(ui): Add Ocean Blue Theme

feat(ui): wip lightbox

fix(ui): fix lightbox mouse

feat(ui): set default theme variants

feat(ui): model manager chakra theme

chore(ui): lint

feat(ui): remove last scss

feat(ui): fix switch theme

feat(ui): Theme Cleanup

feat(ui): Stylize Search Models Found List

feat(ui): hide scrollbars

feat(ui): fix floating button position

feat(ui): Scrollbar Styling

fix broken scripts

This PR fixes the following scripts:

1) Scripts that can be executed within the repo's scripts directory.
   Note that these are for development testing and are not intended
   to be exposed to the user.

   configure_invokeai.py - configuration
   dream.py              - the legacy CLI
   images2prompt.py      - legacy "dream prompt" retriever
   invoke-new.py         - new nodes-based CLI
   invoke.py             - the legacy CLI under another name
   make_models_markdown_table.py - a utility used during the release/doc process
   pypi_helper.py        - another utility used during the release process
   sd-metadata.py        - retrieve JSON-formatted metadata from a PNG file

2) Scripts that are installed by pip install. They get placed into the venv's
   PATH and are intended to be the official entry points:

   invokeai-node-cli      - new nodes-based CLI
   invokeai-node-web      - new nodes-based web server
   invokeai               - legacy CLI
   invokeai-configure     - install time configuration script
   invokeai-merge         - model merging script
   invokeai-ti            - textual inversion script
   invokeai-model-install - model installer
   invokeai-update        - update script
   invokeai-metadata"     - retrieve JSON-formatted metadata from PNG files

protect invocations against black autoformatting

deps: upgrade to diffusers 0.14, safetensors 0.3, transformers 4.26, accelerate 0.16
2023-03-05 19:30:02 +11:00

80 lines
2.4 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os
from argparse import Namespace
from ...backend import Globals
from ..services.generate_initializer import get_generate
from ..services.graph import GraphExecutionState
from ..services.image_storage import DiskImageStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from .events import FastAPIEventService
# TODO: is there a better way to achieve this?
def check_internet() -> bool:
"""
Return true if the internet is reachable.
It does this by pinging huggingface.co.
"""
import urllib.request
host = "http://huggingface.co"
try:
urllib.request.urlopen(host, timeout=1)
return True
except:
return False
class ApiDependencies:
"""Contains and initializes all dependencies for the API"""
invoker: Invoker = None
@staticmethod
def initialize(args, config, event_handler_id: int):
Globals.try_patchmatch = args.patchmatch
Globals.always_use_cpu = args.always_use_cpu
Globals.internet_available = args.internet_available and check_internet()
Globals.disable_xformers = not args.xformers
Globals.ckpt_convert = args.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
generate = get_generate(args, config)
events = FastAPIEventService(event_handler_id)
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../../outputs")
)
images = DiskImageStorage(output_folder)
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices(
generate=generate,
events=events,
images=images,
queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
)
ApiDependencies.invoker = Invoker(services)
@staticmethod
def shutdown():
if ApiDependencies.invoker:
ApiDependencies.invoker.stop()