InvokeAI/invokeai/app/invocations/upscale.py
Martin Kristiansen 218b6d0546 Apply black
2023-07-27 10:54:01 -04:00

122 lines
4.1 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
from pathlib import Path
from typing import Literal, Union
import cv2 as cv
import numpy as np
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from pydantic import Field
from realesrgan import RealESRGANer
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationConfig, InvocationContext
from .image import ImageOutput
# TODO: Populate this from disk?
# TODO: Use model manager to load?
ESRGAN_MODELS = Literal[
"RealESRGAN_x4plus.pth",
"RealESRGAN_x4plus_anime_6B.pth",
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"RealESRGAN_x2plus.pth",
]
class ESRGANInvocation(BaseInvocation):
"""Upscales an image using RealESRGAN."""
type: Literal["esrgan"] = "esrgan"
image: Union[ImageField, None] = Field(default=None, description="The input image")
model_name: ESRGAN_MODELS = Field(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Upscale (RealESRGAN)", "tags": ["image", "upscale", "realesrgan"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
models_path = context.services.configuration.models_path
rrdbnet_model = None
netscale = None
esrgan_model_path = None
if self.model_name in [
"RealESRGAN_x4plus.pth",
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
]:
# x4 RRDBNet model
rrdbnet_model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
netscale = 4
elif self.model_name in ["RealESRGAN_x4plus_anime_6B.pth"]:
# x4 RRDBNet model, 6 blocks
rrdbnet_model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=6, # 6 blocks
num_grow_ch=32,
scale=4,
)
netscale = 4
elif self.model_name in ["RealESRGAN_x2plus.pth"]:
# x2 RRDBNet model
rrdbnet_model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
netscale = 2
else:
msg = f"Invalid RealESRGAN model: {self.model_name}"
context.services.logger.error(msg)
raise ValueError(msg)
esrgan_model_path = Path(f"core/upscaling/realesrgan/{self.model_name}")
upsampler = RealESRGANer(
scale=netscale,
model_path=str(models_path / esrgan_model_path),
model=rrdbnet_model,
half=False,
)
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
cv_image = cv.cvtColor(np.array(image.convert("RGB")), cv.COLOR_RGB2BGR)
# We can pass an `outscale` value here, but it just resizes the image by that factor after
# upscaling, so it's kinda pointless for our purposes. If you want something other than 4x
# upscaling, you'll need to add a resize node after this one.
upscaled_image, img_mode = upsampler.enhance(cv_image)
# back to PIL
pil_image = Image.fromarray(cv.cvtColor(upscaled_image, cv.COLOR_BGR2RGB)).convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)