mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
e93f4d632d
* introduce new abstraction layer for GPU devices * add unit test for device abstraction * fix ruff * convert TorchDeviceSelect into a stateless class * move logic to select context-specific execution device into context API * add mock hardware environments to pytest * remove dangling mocker fixture * fix unit test for running on non-CUDA systems * remove unimplemented get_execution_device() call * remove autocast precision * Multiple changes: 1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to context.models.get_execution_device(). 2. Rename TorchDeviceSelect to TorchDevice 3. Added back the legacy public API defined in `invocation_api`, including choose_precision(). 4. Added a config file migration script to accommodate removal of precision=autocast. * add deprecation warnings to choose_torch_device() and choose_precision() * fix test crash * remove app_config argument from choose_torch_device() and choose_torch_dtype() --------- Co-authored-by: Lincoln Stein <lstein@gmail.com>
148 lines
6.2 KiB
Python
148 lines
6.2 KiB
Python
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
|
|
"""Default implementation of model loading in InvokeAI."""
|
|
|
|
from logging import Logger
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.backend.model_manager import (
|
|
AnyModel,
|
|
AnyModelConfig,
|
|
InvalidModelConfigException,
|
|
SubModelType,
|
|
)
|
|
from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
|
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
|
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
|
|
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
|
|
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
|
from invokeai.backend.util.devices import TorchDevice
|
|
|
|
|
|
# TO DO: The loader is not thread safe!
|
|
class ModelLoader(ModelLoaderBase):
|
|
"""Default implementation of ModelLoaderBase."""
|
|
|
|
def __init__(
|
|
self,
|
|
app_config: InvokeAIAppConfig,
|
|
logger: Logger,
|
|
ram_cache: ModelCacheBase[AnyModel],
|
|
convert_cache: ModelConvertCacheBase,
|
|
):
|
|
"""Initialize the loader."""
|
|
self._app_config = app_config
|
|
self._logger = logger
|
|
self._ram_cache = ram_cache
|
|
self._convert_cache = convert_cache
|
|
self._torch_dtype = TorchDevice.choose_torch_dtype()
|
|
|
|
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
|
"""
|
|
Return a model given its configuration.
|
|
|
|
Given a model's configuration as returned by the ModelRecordConfigStore service,
|
|
return a LoadedModel object that can be used for inference.
|
|
|
|
:param model config: Configuration record for this model
|
|
:param submodel_type: an ModelType enum indicating the portion of
|
|
the model to retrieve (e.g. ModelType.Vae)
|
|
"""
|
|
if model_config.type is ModelType.Main and not submodel_type:
|
|
raise InvalidModelConfigException("submodel_type is required when loading a main model")
|
|
|
|
model_path = self._get_model_path(model_config)
|
|
|
|
if not model_path.exists():
|
|
raise InvalidModelConfigException(f"Files for model '{model_config.name}' not found at {model_path}")
|
|
|
|
with skip_torch_weight_init():
|
|
locker = self._convert_and_load(model_config, model_path, submodel_type)
|
|
return LoadedModel(config=model_config, _locker=locker)
|
|
|
|
@property
|
|
def convert_cache(self) -> ModelConvertCacheBase:
|
|
"""Return the convert cache associated with this loader."""
|
|
return self._convert_cache
|
|
|
|
@property
|
|
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
|
"""Return the ram cache associated with this loader."""
|
|
return self._ram_cache
|
|
|
|
def _get_model_path(self, config: AnyModelConfig) -> Path:
|
|
model_base = self._app_config.models_path
|
|
return (model_base / config.path).resolve()
|
|
|
|
def _convert_and_load(
|
|
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
|
|
) -> ModelLockerBase:
|
|
try:
|
|
return self._ram_cache.get(config.key, submodel_type)
|
|
except IndexError:
|
|
pass
|
|
|
|
cache_path: Path = self._convert_cache.cache_path(config.key)
|
|
if self._needs_conversion(config, model_path, cache_path):
|
|
loaded_model = self._do_convert(config, model_path, cache_path, submodel_type)
|
|
else:
|
|
config.path = str(cache_path) if cache_path.exists() else str(self._get_model_path(config))
|
|
loaded_model = self._load_model(config, submodel_type)
|
|
|
|
self._ram_cache.put(
|
|
config.key,
|
|
submodel_type=submodel_type,
|
|
model=loaded_model,
|
|
size=calc_model_size_by_data(loaded_model),
|
|
)
|
|
|
|
return self._ram_cache.get(
|
|
key=config.key,
|
|
submodel_type=submodel_type,
|
|
stats_name=":".join([config.base, config.type, config.name, (submodel_type or "")]),
|
|
)
|
|
|
|
def get_size_fs(
|
|
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
|
|
) -> int:
|
|
"""Get the size of the model on disk."""
|
|
return calc_model_size_by_fs(
|
|
model_path=model_path,
|
|
subfolder=submodel_type.value if submodel_type else None,
|
|
variant=config.repo_variant if isinstance(config, DiffusersConfigBase) else None,
|
|
)
|
|
|
|
def _do_convert(
|
|
self, config: AnyModelConfig, model_path: Path, cache_path: Path, submodel_type: Optional[SubModelType] = None
|
|
) -> AnyModel:
|
|
self.convert_cache.make_room(calc_model_size_by_fs(model_path))
|
|
pipeline = self._convert_model(config, model_path, cache_path if self.convert_cache.max_size > 0 else None)
|
|
if submodel_type:
|
|
# Proactively load the various submodels into the RAM cache so that we don't have to re-convert
|
|
# the entire pipeline every time a new submodel is needed.
|
|
for subtype in SubModelType:
|
|
if subtype == submodel_type:
|
|
continue
|
|
if submodel := getattr(pipeline, subtype.value, None):
|
|
self._ram_cache.put(
|
|
config.key, submodel_type=subtype, model=submodel, size=calc_model_size_by_data(submodel)
|
|
)
|
|
return getattr(pipeline, submodel_type.value) if submodel_type else pipeline
|
|
|
|
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
|
|
return False
|
|
|
|
# This needs to be implemented in subclasses that handle checkpoints
|
|
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
|
|
raise NotImplementedError
|
|
|
|
# This needs to be implemented in the subclass
|
|
def _load_model(
|
|
self,
|
|
config: AnyModelConfig,
|
|
submodel_type: Optional[SubModelType] = None,
|
|
) -> AnyModel:
|
|
raise NotImplementedError
|