mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
e19aab4a9b
Update main.py Update ddpm.py Update personalized.py Update personalized_style.py Update v1-finetune.yaml Update environment-mac.yaml Rename v1-finetune.yaml to v1-m1-finetune.yaml Create v1-finetune.yaml Update main.py Update main.py Update environment-mac.yaml Update v1-inference.yaml
170 lines
4.9 KiB
Python
170 lines
4.9 KiB
Python
import os
|
||
import numpy as np
|
||
import PIL
|
||
from PIL import Image
|
||
from torch.utils.data import Dataset
|
||
from torchvision import transforms
|
||
|
||
import random
|
||
|
||
imagenet_templates_small = [
|
||
'a painting in the style of {}',
|
||
'a rendering in the style of {}',
|
||
'a cropped painting in the style of {}',
|
||
'the painting in the style of {}',
|
||
'a clean painting in the style of {}',
|
||
'a dirty painting in the style of {}',
|
||
'a dark painting in the style of {}',
|
||
'a picture in the style of {}',
|
||
'a cool painting in the style of {}',
|
||
'a close-up painting in the style of {}',
|
||
'a bright painting in the style of {}',
|
||
'a cropped painting in the style of {}',
|
||
'a good painting in the style of {}',
|
||
'a close-up painting in the style of {}',
|
||
'a rendition in the style of {}',
|
||
'a nice painting in the style of {}',
|
||
'a small painting in the style of {}',
|
||
'a weird painting in the style of {}',
|
||
'a large painting in the style of {}',
|
||
]
|
||
|
||
imagenet_dual_templates_small = [
|
||
'a painting in the style of {} with {}',
|
||
'a rendering in the style of {} with {}',
|
||
'a cropped painting in the style of {} with {}',
|
||
'the painting in the style of {} with {}',
|
||
'a clean painting in the style of {} with {}',
|
||
'a dirty painting in the style of {} with {}',
|
||
'a dark painting in the style of {} with {}',
|
||
'a cool painting in the style of {} with {}',
|
||
'a close-up painting in the style of {} with {}',
|
||
'a bright painting in the style of {} with {}',
|
||
'a cropped painting in the style of {} with {}',
|
||
'a good painting in the style of {} with {}',
|
||
'a painting of one {} in the style of {}',
|
||
'a nice painting in the style of {} with {}',
|
||
'a small painting in the style of {} with {}',
|
||
'a weird painting in the style of {} with {}',
|
||
'a large painting in the style of {} with {}',
|
||
]
|
||
|
||
per_img_token_list = [
|
||
'א',
|
||
'ב',
|
||
'ג',
|
||
'ד',
|
||
'ה',
|
||
'ו',
|
||
'ז',
|
||
'ח',
|
||
'ט',
|
||
'י',
|
||
'כ',
|
||
'ל',
|
||
'מ',
|
||
'נ',
|
||
'ס',
|
||
'ע',
|
||
'פ',
|
||
'צ',
|
||
'ק',
|
||
'ר',
|
||
'ש',
|
||
'ת',
|
||
]
|
||
|
||
|
||
class PersonalizedBase(Dataset):
|
||
def __init__(
|
||
self,
|
||
data_root,
|
||
size=None,
|
||
repeats=100,
|
||
interpolation='bicubic',
|
||
flip_p=0.5,
|
||
set='train',
|
||
placeholder_token='*',
|
||
per_image_tokens=False,
|
||
center_crop=False,
|
||
):
|
||
|
||
self.data_root = data_root
|
||
|
||
self.image_paths = [
|
||
os.path.join(self.data_root, file_path)
|
||
for file_path in os.listdir(self.data_root) if file_path != ".DS_Store"
|
||
]
|
||
|
||
# self._length = len(self.image_paths)
|
||
self.num_images = len(self.image_paths)
|
||
self._length = self.num_images
|
||
|
||
self.placeholder_token = placeholder_token
|
||
|
||
self.per_image_tokens = per_image_tokens
|
||
self.center_crop = center_crop
|
||
|
||
if per_image_tokens:
|
||
assert self.num_images < len(
|
||
per_img_token_list
|
||
), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||
|
||
if set == 'train':
|
||
self._length = self.num_images * repeats
|
||
|
||
self.size = size
|
||
self.interpolation = {
|
||
'linear': PIL.Image.LINEAR,
|
||
'bilinear': PIL.Image.BILINEAR,
|
||
'bicubic': PIL.Image.BICUBIC,
|
||
'lanczos': PIL.Image.LANCZOS,
|
||
}[interpolation]
|
||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||
|
||
def __len__(self):
|
||
return self._length
|
||
|
||
def __getitem__(self, i):
|
||
example = {}
|
||
image = Image.open(self.image_paths[i % self.num_images])
|
||
|
||
if not image.mode == 'RGB':
|
||
image = image.convert('RGB')
|
||
|
||
if self.per_image_tokens and np.random.uniform() < 0.25:
|
||
text = random.choice(imagenet_dual_templates_small).format(
|
||
self.placeholder_token, per_img_token_list[i % self.num_images]
|
||
)
|
||
else:
|
||
text = random.choice(imagenet_templates_small).format(
|
||
self.placeholder_token
|
||
)
|
||
|
||
example['caption'] = text
|
||
|
||
# default to score-sde preprocessing
|
||
img = np.array(image).astype(np.uint8)
|
||
|
||
if self.center_crop:
|
||
crop = min(img.shape[0], img.shape[1])
|
||
h, w, = (
|
||
img.shape[0],
|
||
img.shape[1],
|
||
)
|
||
img = img[
|
||
(h - crop) // 2 : (h + crop) // 2,
|
||
(w - crop) // 2 : (w + crop) // 2,
|
||
]
|
||
|
||
image = Image.fromarray(img)
|
||
if self.size is not None:
|
||
image = image.resize(
|
||
(self.size, self.size), resample=self.interpolation
|
||
)
|
||
|
||
image = self.flip(image)
|
||
image = np.array(image).astype(np.uint8)
|
||
example['image'] = (image / 127.5 - 1.0).astype(np.float32)
|
||
return example
|