InvokeAI/invokeai/app/invocations/prompt.py
psychedelicious 2254a0c078 feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-02-29 13:16:35 -05:00

103 lines
3.4 KiB
Python

from os.path import exists
from typing import Optional, Union
import numpy as np
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from pydantic import field_validator
from invokeai.app.invocations.primitives import StringCollectionOutput
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, UIComponent
@invocation(
"dynamic_prompt",
title="Dynamic Prompt",
tags=["prompt", "collection"],
category="prompt",
version="1.0.0",
use_cache=False,
)
class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
prompt: str = InputField(
description="The prompt to parse with dynamicprompts",
ui_component=UIComponent.Textarea,
)
max_prompts: int = InputField(default=1, description="The number of prompts to generate")
combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator")
def invoke(self, context) -> StringCollectionOutput:
if self.combinatorial:
generator = CombinatorialPromptGenerator()
prompts = generator.generate(self.prompt, max_prompts=self.max_prompts)
else:
generator = RandomPromptGenerator()
prompts = generator.generate(self.prompt, num_images=self.max_prompts)
return StringCollectionOutput(collection=prompts)
@invocation(
"prompt_from_file",
title="Prompts from File",
tags=["prompt", "file"],
category="prompt",
version="1.0.1",
)
class PromptsFromFileInvocation(BaseInvocation):
"""Loads prompts from a text file"""
file_path: str = InputField(description="Path to prompt text file")
pre_prompt: Optional[str] = InputField(
default=None,
description="String to prepend to each prompt",
ui_component=UIComponent.Textarea,
)
post_prompt: Optional[str] = InputField(
default=None,
description="String to append to each prompt",
ui_component=UIComponent.Textarea,
)
start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)")
@field_validator("file_path")
def file_path_exists(cls, v):
if not exists(v):
raise ValueError(FileNotFoundError)
return v
def promptsFromFile(
self,
file_path: str,
pre_prompt: Union[str, None],
post_prompt: Union[str, None],
start_line: int,
max_prompts: int,
):
prompts = []
start_line -= 1
end_line = start_line + max_prompts
if max_prompts <= 0:
end_line = np.iinfo(np.int32).max
with open(file_path, encoding="utf-8") as f:
for i, line in enumerate(f):
if i >= start_line and i < end_line:
prompts.append((pre_prompt or "") + line.strip() + (post_prompt or ""))
if i >= end_line:
break
return prompts
def invoke(self, context) -> StringCollectionOutput:
prompts = self.promptsFromFile(
self.file_path,
self.pre_prompt,
self.post_prompt,
self.start_line,
self.max_prompts,
)
return StringCollectionOutput(collection=prompts)