mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
869 lines
29 KiB
Python
Executable File
869 lines
29 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
# Before running stable-diffusion on an internet-isolated machine,
|
|
# run this script from one with internet connectivity. The
|
|
# two machines must share a common .cache directory.
|
|
#
|
|
# Coauthor: Kevin Turner http://github.com/keturn
|
|
#
|
|
import sys
|
|
print("Loading Python libraries...\n",file=sys.stderr)
|
|
|
|
import argparse
|
|
import io
|
|
import os
|
|
import re
|
|
import shutil
|
|
import traceback
|
|
import warnings
|
|
from argparse import Namespace
|
|
from pathlib import Path
|
|
from shutil import get_terminal_size
|
|
from typing import get_type_hints
|
|
from urllib import request
|
|
|
|
import npyscreen
|
|
import transformers
|
|
from diffusers import AutoencoderKL
|
|
from huggingface_hub import HfFolder
|
|
from huggingface_hub import login as hf_hub_login
|
|
from omegaconf import OmegaConf
|
|
from tqdm import tqdm
|
|
from transformers import (
|
|
AutoProcessor,
|
|
CLIPSegForImageSegmentation,
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
)
|
|
|
|
import invokeai.configs as configs
|
|
|
|
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
|
|
from invokeai.frontend.install.widgets import (
|
|
CenteredButtonPress,
|
|
IntTitleSlider,
|
|
set_min_terminal_size,
|
|
)
|
|
from invokeai.backend.config.legacy_arg_parsing import legacy_parser
|
|
from invokeai.backend.config.model_install_backend import (
|
|
default_dataset,
|
|
download_from_hf,
|
|
hf_download_with_resume,
|
|
recommended_datasets,
|
|
)
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
|
|
# --------------------------globals-----------------------
|
|
config = InvokeAIAppConfig.get_config()
|
|
|
|
Model_dir = "models"
|
|
Weights_dir = "ldm/stable-diffusion-v1/"
|
|
|
|
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
|
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
|
|
|
Default_config_file = config.model_conf_path
|
|
SD_Configs = config.legacy_conf_path
|
|
|
|
Datasets = OmegaConf.load(Dataset_path)
|
|
|
|
# minimum size for the UI
|
|
MIN_COLS = 135
|
|
MIN_LINES = 45
|
|
|
|
PRECISION_CHOICES = ['auto','float16','float32','autocast']
|
|
|
|
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
|
|
# This is the InvokeAI initialization file, which contains command-line default values.
|
|
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
|
|
# or renaming it and then running invokeai-configure again.
|
|
"""
|
|
|
|
|
|
# --------------------------------------------
|
|
def postscript(errors: None):
|
|
if not any(errors):
|
|
message = f"""
|
|
** INVOKEAI INSTALLATION SUCCESSFUL **
|
|
If you installed manually from source or with 'pip install': activate the virtual environment
|
|
then run one of the following commands to start InvokeAI.
|
|
|
|
Web UI:
|
|
invokeai-web
|
|
|
|
Command-line client:
|
|
invokeai
|
|
|
|
If you installed using an installation script, run:
|
|
{config.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
|
|
|
|
Add the '--help' argument to see all of the command-line switches available for use.
|
|
"""
|
|
|
|
else:
|
|
message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
|
|
for err in errors:
|
|
message += f"\t - {err}\n"
|
|
message += "Please check the logs above and correct any issues."
|
|
|
|
print(message)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def yes_or_no(prompt: str, default_yes=True):
|
|
default = "y" if default_yes else "n"
|
|
response = input(f"{prompt} [{default}] ") or default
|
|
if default_yes:
|
|
return response[0] not in ("n", "N")
|
|
else:
|
|
return response[0] in ("y", "Y")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def HfLogin(access_token) -> str:
|
|
"""
|
|
Helper for logging in to Huggingface
|
|
The stdout capture is needed to hide the irrelevant "git credential helper" warning
|
|
"""
|
|
|
|
capture = io.StringIO()
|
|
sys.stdout = capture
|
|
try:
|
|
hf_hub_login(token=access_token, add_to_git_credential=False)
|
|
sys.stdout = sys.__stdout__
|
|
except Exception as exc:
|
|
sys.stdout = sys.__stdout__
|
|
print(exc)
|
|
raise exc
|
|
|
|
|
|
# -------------------------------------
|
|
class ProgressBar:
|
|
def __init__(self, model_name="file"):
|
|
self.pbar = None
|
|
self.name = model_name
|
|
|
|
def __call__(self, block_num, block_size, total_size):
|
|
if not self.pbar:
|
|
self.pbar = tqdm(
|
|
desc=self.name,
|
|
initial=0,
|
|
unit="iB",
|
|
unit_scale=True,
|
|
unit_divisor=1000,
|
|
total=total_size,
|
|
)
|
|
self.pbar.update(block_size)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
|
|
try:
|
|
print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr)
|
|
if not os.path.exists(model_dest):
|
|
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
|
request.urlretrieve(
|
|
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
|
|
)
|
|
print("...downloaded successfully", file=sys.stderr)
|
|
else:
|
|
print("...exists", file=sys.stderr)
|
|
except Exception:
|
|
print("...download failed", file=sys.stderr)
|
|
print(f"Error downloading {label} model", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
|
|
# ---------------------------------------------
|
|
# this will preload the Bert tokenizer fles
|
|
def download_bert():
|
|
print("Installing bert tokenizer...", file=sys.stderr)
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
from transformers import BertTokenizerFast
|
|
|
|
download_from_hf(BertTokenizerFast, "bert-base-uncased")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_sd1_clip():
|
|
print("Installing SD1 clip model...", file=sys.stderr)
|
|
version = "openai/clip-vit-large-patch14"
|
|
download_from_hf(CLIPTokenizer, version)
|
|
download_from_hf(CLIPTextModel, version)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_sd2_clip():
|
|
version = "stabilityai/stable-diffusion-2"
|
|
print("Installing SD2 clip model...", file=sys.stderr)
|
|
download_from_hf(CLIPTokenizer, version, subfolder="tokenizer")
|
|
download_from_hf(CLIPTextModel, version, subfolder="text_encoder")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_realesrgan():
|
|
print("Installing models from RealESRGAN...", file=sys.stderr)
|
|
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
|
|
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
|
|
|
|
model_dest = os.path.join(
|
|
config.root, "models/realesrgan/realesr-general-x4v3.pth"
|
|
)
|
|
|
|
wdn_model_dest = os.path.join(
|
|
config.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
|
|
)
|
|
|
|
download_with_progress_bar(model_url, model_dest, "RealESRGAN")
|
|
download_with_progress_bar(wdn_model_url, wdn_model_dest, "RealESRGANwdn")
|
|
|
|
|
|
def download_gfpgan():
|
|
print("Installing GFPGAN models...", file=sys.stderr)
|
|
for model in (
|
|
[
|
|
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
|
|
"./models/gfpgan/GFPGANv1.4.pth",
|
|
],
|
|
[
|
|
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
|
|
"./models/gfpgan/weights/detection_Resnet50_Final.pth",
|
|
],
|
|
[
|
|
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
|
|
"./models/gfpgan/weights/parsing_parsenet.pth",
|
|
],
|
|
):
|
|
model_url, model_dest = model[0], os.path.join(config.root, model[1])
|
|
download_with_progress_bar(model_url, model_dest, "GFPGAN weights")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_codeformer():
|
|
print("Installing CodeFormer model file...", file=sys.stderr)
|
|
model_url = (
|
|
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
|
)
|
|
model_dest = os.path.join(config.root, "models/codeformer/codeformer.pth")
|
|
download_with_progress_bar(model_url, model_dest, "CodeFormer")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_clipseg():
|
|
print("Installing clipseg model for text-based masking...", file=sys.stderr)
|
|
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
|
|
try:
|
|
download_from_hf(AutoProcessor, CLIPSEG_MODEL)
|
|
download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL)
|
|
except Exception:
|
|
print("Error installing clipseg model:")
|
|
print(traceback.format_exc())
|
|
|
|
|
|
# -------------------------------------
|
|
def download_safety_checker():
|
|
print("Installing model for NSFW content detection...", file=sys.stderr)
|
|
try:
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
|
StableDiffusionSafetyChecker,
|
|
)
|
|
from transformers import AutoFeatureExtractor
|
|
except ModuleNotFoundError:
|
|
print("Error installing NSFW checker model:")
|
|
print(traceback.format_exc())
|
|
return
|
|
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
|
print("AutoFeatureExtractor...", file=sys.stderr)
|
|
download_from_hf(AutoFeatureExtractor, safety_model_id)
|
|
print("StableDiffusionSafetyChecker...", file=sys.stderr)
|
|
download_from_hf(StableDiffusionSafetyChecker, safety_model_id)
|
|
|
|
|
|
# -------------------------------------
|
|
def download_vaes():
|
|
print("Installing stabilityai VAE...", file=sys.stderr)
|
|
try:
|
|
# first the diffusers version
|
|
repo_id = "stabilityai/sd-vae-ft-mse"
|
|
args = dict(
|
|
cache_dir=config.cache_dir,
|
|
)
|
|
if not AutoencoderKL.from_pretrained(repo_id, **args):
|
|
raise Exception(f"download of {repo_id} failed")
|
|
|
|
repo_id = "stabilityai/sd-vae-ft-mse-original"
|
|
model_name = "vae-ft-mse-840000-ema-pruned.ckpt"
|
|
# next the legacy checkpoint version
|
|
if not hf_download_with_resume(
|
|
repo_id=repo_id,
|
|
model_name=model_name,
|
|
model_dir=str(config.root / Model_dir / Weights_dir),
|
|
):
|
|
raise Exception(f"download of {model_name} failed")
|
|
except Exception as e:
|
|
print(f"Error downloading StabilityAI standard VAE: {str(e)}", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
|
|
# -------------------------------------
|
|
def get_root(root: str = None) -> str:
|
|
if root:
|
|
return root
|
|
elif os.environ.get("INVOKEAI_ROOT"):
|
|
return os.environ.get("INVOKEAI_ROOT")
|
|
else:
|
|
return config.root
|
|
|
|
# -------------------------------------
|
|
class editOptsForm(npyscreen.FormMultiPage):
|
|
# for responsive resizing - disabled
|
|
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
|
|
|
|
def create(self):
|
|
program_opts = self.parentApp.program_opts
|
|
old_opts = self.parentApp.invokeai_opts
|
|
first_time = not (config.root / 'invokeai.yaml').exists()
|
|
access_token = HfFolder.get_token()
|
|
window_width, window_height = get_terminal_size()
|
|
for i in [
|
|
"Configure startup settings. You can come back and change these later.",
|
|
"Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.",
|
|
"Use cursor arrows to make a checkbox selection, and space to toggle.",
|
|
]:
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== BASIC OPTIONS ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Select an output directory for images:",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.outdir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name="(<tab> autocompletes, ctrl-N advances):",
|
|
value=str(old_opts.outdir) or str(default_output_dir()),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=40,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Activate the NSFW checker to blur images showing potential sexual imagery:",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.nsfw_checker = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="NSFW checker",
|
|
value=old_opts.nsfw_checker,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
for i in [
|
|
"If you have an account at HuggingFace you may optionally paste your access token here",
|
|
'to allow InvokeAI to download restricted styles & subjects from the "Concept Library".',
|
|
"See https://huggingface.co/settings/tokens",
|
|
]:
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
|
|
self.hf_token = self.add_widget_intelligent(
|
|
npyscreen.TitlePassword,
|
|
name="Access Token (ctrl-shift-V pastes):",
|
|
value=access_token,
|
|
begin_entry_at=42,
|
|
use_two_lines=False,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== ADVANCED OPTIONS ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="GPU Management",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.free_gpu_mem = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Free GPU memory after each generation",
|
|
value=old_opts.free_gpu_mem,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.xformers_enabled = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Enable xformers support if available",
|
|
value=old_opts.xformers_enabled,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.always_use_cpu = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Force CPU to be used on GPU systems",
|
|
value=old_opts.always_use_cpu,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
precision = old_opts.precision or (
|
|
"float32" if program_opts.full_precision else "auto"
|
|
)
|
|
self.precision = self.add_widget_intelligent(
|
|
npyscreen.TitleSelectOne,
|
|
name="Precision",
|
|
values=PRECISION_CHOICES,
|
|
value=PRECISION_CHOICES.index(precision),
|
|
begin_entry_at=3,
|
|
max_height=len(PRECISION_CHOICES) + 1,
|
|
scroll_exit=True,
|
|
)
|
|
self.max_loaded_models = self.add_widget_intelligent(
|
|
IntTitleSlider,
|
|
name="Number of models to cache in CPU memory (each will use 2-4 GB!)",
|
|
value=old_opts.max_loaded_models,
|
|
out_of=10,
|
|
lowest=1,
|
|
begin_entry_at=4,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Directories containing textual inversion and LoRA models (<tab> autocompletes, ctrl-N advances):",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.embedding_dir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name=" Textual Inversion Embeddings:",
|
|
value=str(default_embedding_dir()),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=32,
|
|
scroll_exit=True,
|
|
)
|
|
self.lora_dir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name=" LoRA and LyCORIS:",
|
|
value=str(default_lora_dir()),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=32,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== LICENSE ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
for i in [
|
|
"BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ",
|
|
"AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT",
|
|
"https://huggingface.co/spaces/CompVis/stable-diffusion-license",
|
|
]:
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.license_acceptance = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="I accept the CreativeML Responsible AI License",
|
|
value=not first_time,
|
|
relx=2,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
label = (
|
|
"DONE"
|
|
if program_opts.skip_sd_weights or program_opts.default_only
|
|
else "NEXT"
|
|
)
|
|
self.ok_button = self.add_widget_intelligent(
|
|
CenteredButtonPress,
|
|
name=label,
|
|
relx=(window_width - len(label)) // 2,
|
|
rely=-3,
|
|
when_pressed_function=self.on_ok,
|
|
)
|
|
|
|
def on_ok(self):
|
|
options = self.marshall_arguments()
|
|
if self.validate_field_values(options):
|
|
self.parentApp.new_opts = options
|
|
if hasattr(self.parentApp, "model_select"):
|
|
self.parentApp.setNextForm("MODELS")
|
|
else:
|
|
self.parentApp.setNextForm(None)
|
|
self.editing = False
|
|
else:
|
|
self.editing = True
|
|
|
|
def validate_field_values(self, opt: Namespace) -> bool:
|
|
bad_fields = []
|
|
if not opt.license_acceptance:
|
|
bad_fields.append(
|
|
"Please accept the license terms before proceeding to model downloads"
|
|
)
|
|
if not Path(opt.outdir).parent.exists():
|
|
bad_fields.append(
|
|
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
|
)
|
|
if not Path(opt.embedding_dir).parent.exists():
|
|
bad_fields.append(
|
|
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
|
|
)
|
|
if len(bad_fields) > 0:
|
|
message = "The following problems were detected and must be corrected:\n"
|
|
for problem in bad_fields:
|
|
message += f"* {problem}\n"
|
|
npyscreen.notify_confirm(message)
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
def marshall_arguments(self):
|
|
new_opts = Namespace()
|
|
|
|
for attr in [
|
|
"outdir",
|
|
"nsfw_checker",
|
|
"free_gpu_mem",
|
|
"max_loaded_models",
|
|
"xformers_enabled",
|
|
"always_use_cpu",
|
|
"embedding_dir",
|
|
"lora_dir",
|
|
]:
|
|
setattr(new_opts, attr, getattr(self, attr).value)
|
|
|
|
new_opts.hf_token = self.hf_token.value
|
|
new_opts.license_acceptance = self.license_acceptance.value
|
|
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
|
|
|
# widget library workaround to make max_loaded_models an int rather than a float
|
|
new_opts.max_loaded_models = int(new_opts.max_loaded_models)
|
|
|
|
return new_opts
|
|
|
|
|
|
class EditOptApplication(npyscreen.NPSAppManaged):
|
|
def __init__(self, program_opts: Namespace, invokeai_opts: Namespace):
|
|
super().__init__()
|
|
self.program_opts = program_opts
|
|
self.invokeai_opts = invokeai_opts
|
|
self.user_cancelled = False
|
|
self.user_selections = default_user_selections(program_opts)
|
|
|
|
def onStart(self):
|
|
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
|
self.options = self.addForm(
|
|
"MAIN",
|
|
editOptsForm,
|
|
name="InvokeAI Startup Options",
|
|
)
|
|
if not (self.program_opts.skip_sd_weights or self.program_opts.default_only):
|
|
self.model_select = self.addForm(
|
|
"MODELS",
|
|
addModelsForm,
|
|
name="Install Stable Diffusion Models",
|
|
multipage=True,
|
|
)
|
|
|
|
def new_opts(self):
|
|
return self.options.marshall_arguments()
|
|
|
|
|
|
def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace:
|
|
editApp = EditOptApplication(program_opts, invokeai_opts)
|
|
editApp.run()
|
|
return editApp.new_opts()
|
|
|
|
|
|
def default_startup_options(init_file: Path) -> Namespace:
|
|
opts = InvokeAIAppConfig(argv=[])
|
|
outdir = Path(opts.outdir)
|
|
if not outdir.is_absolute():
|
|
opts.outdir = str(config.root / opts.outdir)
|
|
if not init_file.exists():
|
|
opts.nsfw_checker = True
|
|
return opts
|
|
|
|
def default_user_selections(program_opts: Namespace) -> Namespace:
|
|
return Namespace(
|
|
starter_models=default_dataset()
|
|
if program_opts.default_only
|
|
else recommended_datasets()
|
|
if program_opts.yes_to_all
|
|
else dict(),
|
|
purge_deleted_models=False,
|
|
scan_directory=None,
|
|
autoscan_on_startup=None,
|
|
import_model_paths=None,
|
|
convert_to_diffusers=None,
|
|
)
|
|
|
|
|
|
# -------------------------------------
|
|
def initialize_rootdir(root: str, yes_to_all: bool = False):
|
|
print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
|
|
|
|
for name in (
|
|
"models",
|
|
"configs",
|
|
"embeddings",
|
|
"text-inversion-output",
|
|
"text-inversion-training-data",
|
|
):
|
|
os.makedirs(os.path.join(root, name), exist_ok=True)
|
|
|
|
configs_src = Path(configs.__path__[0])
|
|
configs_dest = Path(root) / "configs"
|
|
if not os.path.samefile(configs_src, configs_dest):
|
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
|
|
|
|
|
# -------------------------------------
|
|
def run_console_ui(
|
|
program_opts: Namespace, initfile: Path = None
|
|
) -> (Namespace, Namespace):
|
|
# parse_args() will read from init file if present
|
|
invokeai_opts = default_startup_options(initfile)
|
|
|
|
set_min_terminal_size(MIN_COLS, MIN_LINES)
|
|
editApp = EditOptApplication(program_opts, invokeai_opts)
|
|
editApp.run()
|
|
if editApp.user_cancelled:
|
|
return (None, None)
|
|
else:
|
|
return (editApp.new_opts, editApp.user_selections)
|
|
|
|
|
|
# -------------------------------------
|
|
def write_opts(opts: Namespace, init_file: Path):
|
|
"""
|
|
Update the invokeai.yaml file with values from current settings.
|
|
"""
|
|
|
|
# this will load current settings
|
|
config = InvokeAIAppConfig()
|
|
for key,value in opts.__dict__.items():
|
|
if hasattr(config,key):
|
|
setattr(config,key,value)
|
|
|
|
with open(init_file,'w', encoding='utf-8') as file:
|
|
file.write(config.to_yaml())
|
|
|
|
# -------------------------------------
|
|
def default_output_dir() -> Path:
|
|
return config.root / "outputs"
|
|
|
|
# -------------------------------------
|
|
def default_embedding_dir() -> Path:
|
|
return config.root / "embeddings"
|
|
|
|
# -------------------------------------
|
|
def default_lora_dir() -> Path:
|
|
return config.root / "loras"
|
|
|
|
# -------------------------------------
|
|
def write_default_options(program_opts: Namespace, initfile: Path):
|
|
opt = default_startup_options(initfile)
|
|
write_opts(opt, initfile)
|
|
|
|
# -------------------------------------
|
|
# Here we bring in
|
|
# the legacy Args object in order to parse
|
|
# the old init file and write out the new
|
|
# yaml format.
|
|
def migrate_init_file(legacy_format:Path):
|
|
old = legacy_parser.parse_args([f'@{str(legacy_format)}'])
|
|
new = InvokeAIAppConfig(conf={})
|
|
|
|
fields = list(get_type_hints(InvokeAIAppConfig).keys())
|
|
for attr in fields:
|
|
if hasattr(old,attr):
|
|
setattr(new,attr,getattr(old,attr))
|
|
|
|
# a few places where the field names have changed and we have to
|
|
# manually add in the new names/values
|
|
new.nsfw_checker = old.safety_checker
|
|
new.xformers_enabled = old.xformers
|
|
new.conf_path = old.conf
|
|
new.embedding_dir = old.embedding_path
|
|
|
|
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
|
|
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
|
|
outfile.write(new.to_yaml())
|
|
|
|
legacy_format.replace(legacy_format.parent / 'invokeai.init.old')
|
|
|
|
# -------------------------------------
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
|
parser.add_argument(
|
|
"--skip-sd-weights",
|
|
dest="skip_sd_weights",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=False,
|
|
help="skip downloading the large Stable Diffusion weight files",
|
|
)
|
|
parser.add_argument(
|
|
"--skip-support-models",
|
|
dest="skip_support_models",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=False,
|
|
help="skip downloading the support models",
|
|
)
|
|
parser.add_argument(
|
|
"--full-precision",
|
|
dest="full_precision",
|
|
action=argparse.BooleanOptionalAction,
|
|
type=bool,
|
|
default=False,
|
|
help="use 32-bit weights instead of faster 16-bit weights",
|
|
)
|
|
parser.add_argument(
|
|
"--yes",
|
|
"-y",
|
|
dest="yes_to_all",
|
|
action="store_true",
|
|
help='answer "yes" to all prompts',
|
|
)
|
|
parser.add_argument(
|
|
"--default_only",
|
|
action="store_true",
|
|
help="when --yes specified, only install the default model",
|
|
)
|
|
parser.add_argument(
|
|
"--config_file",
|
|
"-c",
|
|
dest="config_file",
|
|
type=str,
|
|
default=None,
|
|
help="path to configuration file to create",
|
|
)
|
|
parser.add_argument(
|
|
"--root_dir",
|
|
dest="root",
|
|
type=str,
|
|
default=None,
|
|
help="path to root of install directory",
|
|
)
|
|
opt = parser.parse_args()
|
|
|
|
# setting a global here
|
|
global config
|
|
config.root = Path(os.path.expanduser(get_root(opt.root) or ""))
|
|
|
|
errors = set()
|
|
|
|
try:
|
|
models_to_download = default_user_selections(opt)
|
|
|
|
# We check for to see if the runtime directory is correctly initialized.
|
|
old_init_file = Path(config.root, 'invokeai.init')
|
|
new_init_file = Path(config.root, 'invokeai.yaml')
|
|
if old_init_file.exists() and not new_init_file.exists():
|
|
print('** Migrating invokeai.init to invokeai.yaml')
|
|
migrate_init_file(old_init_file)
|
|
# Load new init file into config
|
|
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file))
|
|
|
|
if not config.model_conf_path.exists():
|
|
initialize_rootdir(config.root, opt.yes_to_all)
|
|
|
|
if opt.yes_to_all:
|
|
write_default_options(opt, new_init_file)
|
|
init_options = Namespace(
|
|
precision="float32" if opt.full_precision else "float16"
|
|
)
|
|
else:
|
|
init_options, models_to_download = run_console_ui(opt, new_init_file)
|
|
if init_options:
|
|
write_opts(init_options, new_init_file)
|
|
else:
|
|
print(
|
|
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
|
|
)
|
|
sys.exit(0)
|
|
|
|
if opt.skip_support_models:
|
|
print("\n** SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST **")
|
|
else:
|
|
print("\n** DOWNLOADING SUPPORT MODELS **")
|
|
download_bert()
|
|
download_sd1_clip()
|
|
download_sd2_clip()
|
|
download_realesrgan()
|
|
download_gfpgan()
|
|
download_codeformer()
|
|
download_clipseg()
|
|
download_safety_checker()
|
|
download_vaes()
|
|
|
|
if opt.skip_sd_weights:
|
|
print("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
|
|
elif models_to_download:
|
|
print("\n** DOWNLOADING DIFFUSION WEIGHTS **")
|
|
process_and_execute(opt, models_to_download)
|
|
|
|
postscript(errors=errors)
|
|
except KeyboardInterrupt:
|
|
print("\nGoodbye! Come back soon.")
|
|
|
|
|
|
# -------------------------------------
|
|
if __name__ == "__main__":
|
|
main()
|