mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
96 lines
3.7 KiB
Python
96 lines
3.7 KiB
Python
import gc
|
|
from typing import Optional
|
|
|
|
import psutil
|
|
import torch
|
|
|
|
from invokeai.backend.model_management.libc_util import LibcUtil, Struct_mallinfo2
|
|
|
|
GB = 2**30 # 1 GB
|
|
|
|
|
|
class MemorySnapshot:
|
|
"""A snapshot of RAM and VRAM usage. All values are in bytes."""
|
|
|
|
def __init__(self, process_ram: int, vram: Optional[int], malloc_info: Optional[Struct_mallinfo2]):
|
|
"""Initialize a MemorySnapshot.
|
|
|
|
Most of the time, `MemorySnapshot` will be constructed with `MemorySnapshot.capture()`.
|
|
|
|
Args:
|
|
process_ram (int): CPU RAM used by the current process.
|
|
vram (Optional[int]): VRAM used by torch.
|
|
malloc_info (Optional[Struct_mallinfo2]): Malloc info obtained from LibcUtil.
|
|
"""
|
|
self.process_ram = process_ram
|
|
self.vram = vram
|
|
self.malloc_info = malloc_info
|
|
|
|
@classmethod
|
|
def capture(cls, run_garbage_collector: bool = True):
|
|
"""Capture and return a MemorySnapshot.
|
|
|
|
Note: This function has significant overhead, particularly if `run_garbage_collector == True`.
|
|
|
|
Args:
|
|
run_garbage_collector (bool, optional): If true, gc.collect() will be run before checking the process RAM
|
|
usage. Defaults to True.
|
|
|
|
Returns:
|
|
MemorySnapshot
|
|
"""
|
|
if run_garbage_collector:
|
|
gc.collect()
|
|
|
|
# According to the psutil docs (https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info), rss is
|
|
# supported on all platforms.
|
|
process_ram = psutil.Process().memory_info().rss
|
|
|
|
if torch.cuda.is_available():
|
|
vram = torch.cuda.memory_allocated()
|
|
else:
|
|
# TODO: We could add support for mps.current_allocated_memory() as well. Leaving out for now until we have
|
|
# time to test it properly.
|
|
vram = None
|
|
|
|
try:
|
|
malloc_info = LibcUtil().mallinfo2()
|
|
except OSError:
|
|
# This is expected in environments that do not have the 'libc.so.6' shared library.
|
|
malloc_info = None
|
|
|
|
return cls(process_ram, vram, malloc_info)
|
|
|
|
|
|
def get_pretty_snapshot_diff(snapshot_1: MemorySnapshot, snapshot_2: MemorySnapshot) -> str:
|
|
"""Get a pretty string describing the difference between two `MemorySnapshot`s."""
|
|
|
|
def get_msg_line(prefix: str, val1: Optional[int], val2: Optional[int]):
|
|
diff = None
|
|
if val1 is not None and val2 is not None:
|
|
diff = val2 - val1
|
|
return f"{prefix: <30} ({(diff/GB):+5.3f}): {(val1/GB):5.3f}GB -> {(val2/GB):5.3f}GB\n"
|
|
|
|
msg = ""
|
|
|
|
msg += get_msg_line("Process RAM", snapshot_1.process_ram, snapshot_2.process_ram)
|
|
|
|
if snapshot_1.malloc_info is not None and snapshot_2.malloc_info is not None:
|
|
msg += get_msg_line("libc mmap allocated", snapshot_1.malloc_info.hblkhd, snapshot_2.malloc_info.hblkhd)
|
|
|
|
msg += get_msg_line("libc arena used", snapshot_1.malloc_info.uordblks, snapshot_2.malloc_info.uordblks)
|
|
|
|
msg += get_msg_line("libc arena free", snapshot_1.malloc_info.fordblks, snapshot_2.malloc_info.fordblks)
|
|
|
|
libc_total_allocated_1 = snapshot_1.malloc_info.arena + snapshot_1.malloc_info.hblkhd
|
|
libc_total_allocated_2 = snapshot_2.malloc_info.arena + snapshot_2.malloc_info.hblkhd
|
|
msg += get_msg_line("libc total allocated", libc_total_allocated_1, libc_total_allocated_2)
|
|
|
|
libc_total_used_1 = snapshot_1.malloc_info.uordblks + snapshot_1.malloc_info.hblkhd
|
|
libc_total_used_2 = snapshot_2.malloc_info.uordblks + snapshot_2.malloc_info.hblkhd
|
|
msg += get_msg_line("libc total used", libc_total_used_1, libc_total_used_2)
|
|
|
|
msg += get_msg_line("VRAM", snapshot_1.vram, snapshot_2.vram)
|
|
|
|
return msg
|