mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
89 lines
2.9 KiB
Python
89 lines
2.9 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
import os
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from typing import types
|
|
|
|
from ..services.default_graphs import create_system_graphs
|
|
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
|
from ..services.restoration_services import RestorationServices
|
|
from ..services.graph import GraphExecutionState, LibraryGraph
|
|
from ..services.image_storage import DiskImageStorage
|
|
from ..services.invocation_queue import MemoryInvocationQueue
|
|
from ..services.invocation_services import InvocationServices
|
|
from ..services.invoker import Invoker
|
|
from ..services.processor import DefaultInvocationProcessor
|
|
from ..services.sqlite import SqliteItemStorage
|
|
from ..services.metadata import PngMetadataService
|
|
from ..services.model_manager_service import ModelManagerService
|
|
from .events import FastAPIEventService
|
|
|
|
|
|
# TODO: is there a better way to achieve this?
|
|
def check_internet() -> bool:
|
|
"""
|
|
Return true if the internet is reachable.
|
|
It does this by pinging huggingface.co.
|
|
"""
|
|
import urllib.request
|
|
|
|
host = "http://huggingface.co"
|
|
try:
|
|
urllib.request.urlopen(host, timeout=1)
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
|
|
class ApiDependencies:
|
|
"""Contains and initializes all dependencies for the API"""
|
|
|
|
invoker: Invoker = None
|
|
|
|
def initialize(config, event_handler_id: int, logger: types.ModuleType=logger):
|
|
logger.info(f"Internet connectivity is {config.internet_available}")
|
|
|
|
events = FastAPIEventService(event_handler_id)
|
|
|
|
output_folder = os.path.abspath(
|
|
os.path.join(os.path.dirname(__file__), "../../../../outputs")
|
|
)
|
|
|
|
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
|
|
|
|
metadata = PngMetadataService()
|
|
|
|
images = DiskImageStorage(f'{output_folder}/images', metadata_service=metadata)
|
|
|
|
# TODO: build a file/path manager?
|
|
db_location = os.path.join(output_folder, "invokeai.db")
|
|
|
|
services = InvocationServices(
|
|
model_manager=ModelManagerService(config,logger),
|
|
events=events,
|
|
latents=latents,
|
|
images=images,
|
|
metadata=metadata,
|
|
queue=MemoryInvocationQueue(),
|
|
graph_library=SqliteItemStorage[LibraryGraph](
|
|
filename=db_location, table_name="graphs"
|
|
),
|
|
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
|
|
filename=db_location, table_name="graph_executions"
|
|
),
|
|
processor=DefaultInvocationProcessor(),
|
|
restoration=RestorationServices(config,logger),
|
|
configuration=config,
|
|
logger=logger,
|
|
)
|
|
|
|
create_system_graphs(services.graph_library)
|
|
|
|
ApiDependencies.invoker = Invoker(services)
|
|
|
|
@staticmethod
|
|
def shutdown():
|
|
if ApiDependencies.invoker:
|
|
ApiDependencies.invoker.stop()
|