mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
276a95ae8e
Consolidate graph processing logic into session processor. With graphs as the unit of work, and the session queue distributing graphs, we no longer need the invocation queue or processor. Instead, the session processor dequeues the next session and processes it in a simple loop, greatly simplifying the app. - Remove `graph_execution_manager` service. - Remove `queue` (invocation queue) service. - Remove `processor` (invocation processor) service. - Remove queue-related logic from `Invoker`. It now only starts and stops the services, providing them with access to other services. - Remove unused `invocation_retrieval_error` and `session_retrieval_error` events, these are no longer needed. - Clean up stats service now that it is less coupled to the rest of the app. - Refactor cancellation logic - cancellations now originate from session queue (i.e. HTTP cancel endpoint) and are emitted as events. Processor gets the events and sets the canceled event. Access to this event is provided to the invocation context for e.g. the step callback. - Remove `sessions` router; it provided access to `graph_executions` but that no longer exists.
128 lines
4.6 KiB
Python
128 lines
4.6 KiB
Python
from typing import TYPE_CHECKING, Callable
|
|
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from invokeai.app.services.session_processor.session_processor_common import CanceledException, ProgressImage
|
|
from invokeai.backend.model_manager.config import BaseModelType
|
|
|
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
|
from ...backend.util.util import image_to_dataURL
|
|
|
|
if TYPE_CHECKING:
|
|
from invokeai.app.services.events.events_base import EventServiceBase
|
|
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
|
|
|
|
|
def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix=None):
|
|
latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors
|
|
|
|
if smooth_matrix is not None:
|
|
latent_image = latent_image.unsqueeze(0).permute(3, 0, 1, 2)
|
|
latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1, 1, 3, 3)), padding=1)
|
|
latent_image = latent_image.permute(1, 2, 3, 0).squeeze(0)
|
|
|
|
latents_ubyte = (
|
|
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF).byte() # change scale from -1..1 to 0..1 # to 0..255
|
|
).cpu()
|
|
|
|
return Image.fromarray(latents_ubyte.numpy())
|
|
|
|
|
|
def stable_diffusion_step_callback(
|
|
context_data: "InvocationContextData",
|
|
intermediate_state: PipelineIntermediateState,
|
|
base_model: BaseModelType,
|
|
events: "EventServiceBase",
|
|
is_canceled: Callable[[], bool],
|
|
) -> None:
|
|
if is_canceled():
|
|
raise CanceledException
|
|
|
|
# Some schedulers report not only the noisy latents at the current timestep,
|
|
# but also their estimate so far of what the de-noised latents will be. Use
|
|
# that estimate if it is available.
|
|
if intermediate_state.predicted_original is not None:
|
|
sample = intermediate_state.predicted_original
|
|
else:
|
|
sample = intermediate_state.latents
|
|
|
|
# TODO: This does not seem to be needed any more?
|
|
# # txt2img provides a Tensor in the step_callback
|
|
# # img2img provides a PipelineIntermediateState
|
|
# if isinstance(sample, PipelineIntermediateState):
|
|
# # this was an img2img
|
|
# print('img2img')
|
|
# latents = sample.latents
|
|
# step = sample.step
|
|
# else:
|
|
# print('txt2img')
|
|
# latents = sample
|
|
# step = intermediate_state.step
|
|
|
|
# TODO: only output a preview image when requested
|
|
|
|
if base_model in [BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner]:
|
|
# fast latents preview matrix for sdxl
|
|
# generated by @StAlKeR7779
|
|
sdxl_latent_rgb_factors = torch.tensor(
|
|
[
|
|
# R G B
|
|
[0.3816, 0.4930, 0.5320],
|
|
[-0.3753, 0.1631, 0.1739],
|
|
[0.1770, 0.3588, -0.2048],
|
|
[-0.4350, -0.2644, -0.4289],
|
|
],
|
|
dtype=sample.dtype,
|
|
device=sample.device,
|
|
)
|
|
|
|
sdxl_smooth_matrix = torch.tensor(
|
|
[
|
|
[0.0358, 0.0964, 0.0358],
|
|
[0.0964, 0.4711, 0.0964],
|
|
[0.0358, 0.0964, 0.0358],
|
|
],
|
|
dtype=sample.dtype,
|
|
device=sample.device,
|
|
)
|
|
|
|
image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix)
|
|
else:
|
|
# origingally adapted from code by @erucipe and @keturn here:
|
|
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
|
|
|
|
# these updated numbers for v1.5 are from @torridgristle
|
|
v1_5_latent_rgb_factors = torch.tensor(
|
|
[
|
|
# R G B
|
|
[0.3444, 0.1385, 0.0670], # L1
|
|
[0.1247, 0.4027, 0.1494], # L2
|
|
[-0.3192, 0.2513, 0.2103], # L3
|
|
[-0.1307, -0.1874, -0.7445], # L4
|
|
],
|
|
dtype=sample.dtype,
|
|
device=sample.device,
|
|
)
|
|
|
|
image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors)
|
|
|
|
(width, height) = image.size
|
|
width *= 8
|
|
height *= 8
|
|
|
|
dataURL = image_to_dataURL(image, image_format="JPEG")
|
|
|
|
events.emit_generator_progress(
|
|
queue_id=context_data.queue_id,
|
|
queue_item_id=context_data.queue_item_id,
|
|
queue_batch_id=context_data.batch_id,
|
|
graph_execution_state_id=context_data.session_id,
|
|
node_id=context_data.invocation.id,
|
|
source_node_id=context_data.source_node_id,
|
|
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
|
|
step=intermediate_state.step,
|
|
order=intermediate_state.order,
|
|
total_steps=intermediate_state.total_steps,
|
|
)
|