mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
8637c40661
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them. Supporting minor changes: - Patch bump for all nodes that use the context - Update invocation processor to provide new context - Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node - Minor change to `ModelManagerService` to support the new wrapped context - Fanagling of imports to avoid circular dependencies
117 lines
3.9 KiB
Python
117 lines
3.9 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
|
|
from pathlib import Path
|
|
from typing import Literal
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from pydantic import ConfigDict
|
|
|
|
from invokeai.app.invocations.fields import ImageField
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
|
|
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
|
|
from invokeai.backend.util.devices import choose_torch_device
|
|
|
|
from .baseinvocation import BaseInvocation, invocation
|
|
from .fields import InputField, WithMetadata
|
|
|
|
# TODO: Populate this from disk?
|
|
# TODO: Use model manager to load?
|
|
ESRGAN_MODELS = Literal[
|
|
"RealESRGAN_x4plus.pth",
|
|
"RealESRGAN_x4plus_anime_6B.pth",
|
|
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
|
"RealESRGAN_x2plus.pth",
|
|
]
|
|
|
|
if choose_torch_device() == torch.device("mps"):
|
|
from torch import mps
|
|
|
|
|
|
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.1")
|
|
class ESRGANInvocation(BaseInvocation, WithMetadata):
|
|
"""Upscales an image using RealESRGAN."""
|
|
|
|
image: ImageField = InputField(description="The input image")
|
|
model_name: ESRGAN_MODELS = InputField(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use")
|
|
tile_size: int = InputField(
|
|
default=400, ge=0, description="Tile size for tiled ESRGAN upscaling (0=tiling disabled)"
|
|
)
|
|
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
def invoke(self, context) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name)
|
|
models_path = context.config.get().models_path
|
|
|
|
rrdbnet_model = None
|
|
netscale = None
|
|
esrgan_model_path = None
|
|
|
|
if self.model_name in [
|
|
"RealESRGAN_x4plus.pth",
|
|
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
|
]:
|
|
# x4 RRDBNet model
|
|
rrdbnet_model = RRDBNet(
|
|
num_in_ch=3,
|
|
num_out_ch=3,
|
|
num_feat=64,
|
|
num_block=23,
|
|
num_grow_ch=32,
|
|
scale=4,
|
|
)
|
|
netscale = 4
|
|
elif self.model_name in ["RealESRGAN_x4plus_anime_6B.pth"]:
|
|
# x4 RRDBNet model, 6 blocks
|
|
rrdbnet_model = RRDBNet(
|
|
num_in_ch=3,
|
|
num_out_ch=3,
|
|
num_feat=64,
|
|
num_block=6, # 6 blocks
|
|
num_grow_ch=32,
|
|
scale=4,
|
|
)
|
|
netscale = 4
|
|
elif self.model_name in ["RealESRGAN_x2plus.pth"]:
|
|
# x2 RRDBNet model
|
|
rrdbnet_model = RRDBNet(
|
|
num_in_ch=3,
|
|
num_out_ch=3,
|
|
num_feat=64,
|
|
num_block=23,
|
|
num_grow_ch=32,
|
|
scale=2,
|
|
)
|
|
netscale = 2
|
|
else:
|
|
msg = f"Invalid RealESRGAN model: {self.model_name}"
|
|
context.logger.error(msg)
|
|
raise ValueError(msg)
|
|
|
|
esrgan_model_path = Path(f"core/upscaling/realesrgan/{self.model_name}")
|
|
|
|
upscaler = RealESRGAN(
|
|
scale=netscale,
|
|
model_path=models_path / esrgan_model_path,
|
|
model=rrdbnet_model,
|
|
half=False,
|
|
tile=self.tile_size,
|
|
)
|
|
|
|
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
|
|
# TODO: This strips the alpha... is that okay?
|
|
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
|
|
upscaled_image = upscaler.upscale(cv2_image)
|
|
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
|
|
|
|
torch.cuda.empty_cache()
|
|
if choose_torch_device() == torch.device("mps"):
|
|
mps.empty_cache()
|
|
|
|
image_dto = context.images.save(image=pil_image)
|
|
|
|
return ImageOutput.build(image_dto)
|