InvokeAI/invokeai/backend/stable_diffusion/diffusion/conditioning_data.py

255 lines
9.7 KiB
Python

from __future__ import annotations
import math
from dataclasses import dataclass
from enum import Enum
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import torch
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
if TYPE_CHECKING:
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.denoise_context import UNetKwargs
@dataclass
class BasicConditioningInfo:
"""SD 1/2 text conditioning information produced by Compel."""
embeds: torch.Tensor
def to(self, device, dtype=None):
self.embeds = self.embeds.to(device=device, dtype=dtype)
return self
@dataclass
class SDXLConditioningInfo(BasicConditioningInfo):
"""SDXL text conditioning information produced by Compel."""
pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor
def to(self, device, dtype=None):
self.pooled_embeds = self.pooled_embeds.to(device=device, dtype=dtype)
self.add_time_ids = self.add_time_ids.to(device=device, dtype=dtype)
return super().to(device=device, dtype=dtype)
@dataclass
class FLUXConditioningInfo:
clip_embeds: torch.Tensor
t5_embeds: torch.Tensor
@dataclass
class ConditioningFieldData:
conditionings: List[BasicConditioningInfo] | List[SDXLConditioningInfo] | List[FLUXConditioningInfo]
@dataclass
class IPAdapterConditioningInfo:
cond_image_prompt_embeds: torch.Tensor
"""IP-Adapter image encoder conditioning embeddings.
Shape: (num_images, num_tokens, encoding_dim).
"""
uncond_image_prompt_embeds: torch.Tensor
"""IP-Adapter image encoding embeddings to use for unconditional generation.
Shape: (num_images, num_tokens, encoding_dim).
"""
@dataclass
class IPAdapterData:
ip_adapter_model: IPAdapter
ip_adapter_conditioning: IPAdapterConditioningInfo
mask: torch.Tensor
target_blocks: List[str]
# Either a single weight applied to all steps, or a list of weights for each step.
weight: Union[float, List[float]] = 1.0
begin_step_percent: float = 0.0
end_step_percent: float = 1.0
def scale_for_step(self, step_index: int, total_steps: int) -> float:
first_adapter_step = math.floor(self.begin_step_percent * total_steps)
last_adapter_step = math.ceil(self.end_step_percent * total_steps)
weight = self.weight[step_index] if isinstance(self.weight, List) else self.weight
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
return weight
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
return 0.0
@dataclass
class Range:
start: int
end: int
class TextConditioningRegions:
def __init__(
self,
masks: torch.Tensor,
ranges: list[Range],
):
# A binary mask indicating the regions of the image that the prompt should be applied to.
# Shape: (1, num_prompts, height, width)
# Dtype: torch.bool
self.masks = masks
# A list of ranges indicating the start and end indices of the embeddings that corresponding mask applies to.
# ranges[i] contains the embedding range for the i'th prompt / mask.
self.ranges = ranges
assert self.masks.shape[1] == len(self.ranges)
class ConditioningMode(Enum):
Both = "both"
Negative = "negative"
Positive = "positive"
class TextConditioningData:
def __init__(
self,
uncond_text: Union[BasicConditioningInfo, SDXLConditioningInfo],
cond_text: Union[BasicConditioningInfo, SDXLConditioningInfo],
uncond_regions: Optional[TextConditioningRegions],
cond_regions: Optional[TextConditioningRegions],
guidance_scale: Union[float, List[float]],
guidance_rescale_multiplier: float = 0, # TODO: old backend, remove
):
self.uncond_text = uncond_text
self.cond_text = cond_text
self.uncond_regions = uncond_regions
self.cond_regions = cond_regions
# Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
# `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
# Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
# images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
self.guidance_scale = guidance_scale
# TODO: old backend, remove
# For models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7.
# See [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
self.guidance_rescale_multiplier = guidance_rescale_multiplier
def is_sdxl(self):
assert isinstance(self.uncond_text, SDXLConditioningInfo) == isinstance(self.cond_text, SDXLConditioningInfo)
return isinstance(self.cond_text, SDXLConditioningInfo)
def to_unet_kwargs(self, unet_kwargs: UNetKwargs, conditioning_mode: ConditioningMode):
"""Fills unet arguments with data from provided conditionings.
Args:
unet_kwargs (UNetKwargs): Object which stores UNet model arguments.
conditioning_mode (ConditioningMode): Describes which conditionings should be used.
"""
_, _, h, w = unet_kwargs.sample.shape
device = unet_kwargs.sample.device
dtype = unet_kwargs.sample.dtype
# TODO: combine regions with conditionings
if conditioning_mode == ConditioningMode.Both:
conditionings = [self.uncond_text, self.cond_text]
c_regions = [self.uncond_regions, self.cond_regions]
elif conditioning_mode == ConditioningMode.Positive:
conditionings = [self.cond_text]
c_regions = [self.cond_regions]
elif conditioning_mode == ConditioningMode.Negative:
conditionings = [self.uncond_text]
c_regions = [self.uncond_regions]
else:
raise ValueError(f"Unexpected conditioning mode: {conditioning_mode}")
encoder_hidden_states, encoder_attention_mask = self._concat_conditionings_for_batch(
[c.embeds for c in conditionings]
)
unet_kwargs.encoder_hidden_states = encoder_hidden_states
unet_kwargs.encoder_attention_mask = encoder_attention_mask
if self.is_sdxl():
added_cond_kwargs = dict( # noqa: C408
text_embeds=torch.cat([c.pooled_embeds for c in conditionings]),
time_ids=torch.cat([c.add_time_ids for c in conditionings]),
)
unet_kwargs.added_cond_kwargs = added_cond_kwargs
if any(r is not None for r in c_regions):
tmp_regions = []
for c, r in zip(conditionings, c_regions, strict=True):
if r is None:
r = TextConditioningRegions(
masks=torch.ones((1, 1, h, w), dtype=dtype),
ranges=[Range(start=0, end=c.embeds.shape[1])],
)
tmp_regions.append(r)
if unet_kwargs.cross_attention_kwargs is None:
unet_kwargs.cross_attention_kwargs = {}
unet_kwargs.cross_attention_kwargs.update(
regional_prompt_data=RegionalPromptData(regions=tmp_regions, device=device, dtype=dtype),
)
@staticmethod
def _pad_zeros(t: torch.Tensor, pad_shape: tuple, dim: int) -> torch.Tensor:
return torch.cat([t, torch.zeros(pad_shape, device=t.device, dtype=t.dtype)], dim=dim)
@classmethod
def _pad_conditioning(
cls,
cond: torch.Tensor,
target_len: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Pad provided conditioning tensor to target_len by zeros and returns mask of unpadded bytes.
Args:
cond (torch.Tensor): Conditioning tensor which to pads by zeros.
target_len (int): To which length(tokens count) pad tensor.
"""
conditioning_attention_mask = torch.ones((cond.shape[0], cond.shape[1]), device=cond.device, dtype=cond.dtype)
if cond.shape[1] < target_len:
conditioning_attention_mask = cls._pad_zeros(
conditioning_attention_mask,
pad_shape=(cond.shape[0], target_len - cond.shape[1]),
dim=1,
)
cond = cls._pad_zeros(
cond,
pad_shape=(cond.shape[0], target_len - cond.shape[1], cond.shape[2]),
dim=1,
)
return cond, conditioning_attention_mask
@classmethod
def _concat_conditionings_for_batch(
cls,
conditionings: List[torch.Tensor],
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Concatenate provided conditioning tensors to one batched tensor.
If tensors have different sizes then pad them by zeros and creates
encoder_attention_mask to exclude padding from attention.
Args:
conditionings (List[torch.Tensor]): List of conditioning tensors to concatenate.
"""
encoder_attention_mask = None
max_len = max([c.shape[1] for c in conditionings])
if any(c.shape[1] != max_len for c in conditionings):
encoder_attention_masks = [None] * len(conditionings)
for i in range(len(conditionings)):
conditionings[i], encoder_attention_masks[i] = cls._pad_conditioning(conditionings[i], max_len)
encoder_attention_mask = torch.cat(encoder_attention_masks)
return torch.cat(conditionings), encoder_attention_mask