mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
167 lines
6.9 KiB
Python
167 lines
6.9 KiB
Python
"""
|
|
Query and install embeddings from the HuggingFace SD Concepts Library
|
|
at https://huggingface.co/sd-concepts-library.
|
|
|
|
The interface is through the Concepts() object.
|
|
"""
|
|
import os
|
|
import re
|
|
import traceback
|
|
from typing import Callable
|
|
from urllib import request, error as ul_error
|
|
from huggingface_hub import HfFolder, hf_hub_url, ModelSearchArguments, ModelFilter, HfApi
|
|
from ldm.invoke.globals import Globals
|
|
|
|
class Concepts(object):
|
|
def __init__(self, root=None):
|
|
'''
|
|
Initialize the Concepts object. May optionally pass a root directory.
|
|
'''
|
|
self.root = root or Globals.root
|
|
self.hf_api = HfApi()
|
|
self.concept_list = None
|
|
self.concepts_loaded = dict()
|
|
self.triggers = dict() # concept name to trigger phrase
|
|
self.concept_names = dict() # trigger phrase to concept name
|
|
self.match_trigger = re.compile('(<[\w\- >]+>)') # trigger is slightly less restrictive than HF concept name
|
|
self.match_concept = re.compile('<([\w\-]+)>') # HF concept name can only contain A-Za-z0-9_-
|
|
|
|
def list_concepts(self)->list:
|
|
'''
|
|
Return a list of all the concepts by name, without the 'sd-concepts-library' part.
|
|
'''
|
|
if self.concept_list is not None:
|
|
return self.concept_list
|
|
try:
|
|
models = self.hf_api.list_models(filter=ModelFilter(model_name='sd-concepts-library/'))
|
|
self.concept_list = [a.id.split('/')[1] for a in models]
|
|
except Exception as e:
|
|
print(f' ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}.')
|
|
print(' ** You may load .bin and .pt file(s) manually using the --embedding_directory argument.')
|
|
return self.concept_list
|
|
|
|
def get_concept_model_path(self, concept_name:str)->str:
|
|
'''
|
|
Returns the path to the 'learned_embeds.bin' file in
|
|
the named concept. Returns None if invalid or cannot
|
|
be downloaded.
|
|
'''
|
|
return self.get_concept_file(concept_name.lower(),'learned_embeds.bin')
|
|
|
|
def concept_to_trigger(self, concept_name:str)->str:
|
|
'''
|
|
Given a concept name returns its trigger by looking in the
|
|
"token_identifier.txt" file.
|
|
'''
|
|
if concept_name in self.triggers:
|
|
return self.triggers[concept_name]
|
|
file = self.get_concept_file(concept_name, 'token_identifier.txt', local_only=True)
|
|
if not file:
|
|
return None
|
|
with open(file,'r') as f:
|
|
trigger = f.readline()
|
|
trigger = trigger.strip()
|
|
self.triggers[concept_name] = trigger
|
|
self.concept_names[trigger] = concept_name
|
|
return trigger
|
|
|
|
def trigger_to_concept(self, trigger:str)->str:
|
|
'''
|
|
Given a trigger phrase, maps it to the concept library name.
|
|
Only works if concept_to_trigger() has previously been called
|
|
on this library. There needs to be a persistent database for
|
|
this.
|
|
'''
|
|
concept = self.concept_names.get(trigger,None)
|
|
return f'<{concept}>' if concept else f'{trigger}'
|
|
|
|
def replace_triggers_with_concepts(self, prompt:str)->str:
|
|
'''
|
|
Given a prompt string that contains <trigger> tags, replace these
|
|
tags with the concept name. The reason for this is so that the
|
|
concept names get stored in the prompt metadata. There is no
|
|
controlling of colliding triggers in the SD library, so it is
|
|
better to store the concept name (unique) than the concept trigger
|
|
(not necessarily unique!)
|
|
'''
|
|
if not prompt:
|
|
return prompt
|
|
triggers = self.match_trigger.findall(prompt)
|
|
if not triggers:
|
|
return prompt
|
|
|
|
def do_replace(match)->str:
|
|
return self.trigger_to_concept(match.group(1)) or f'<{match.group(1)}>'
|
|
return self.match_trigger.sub(do_replace, prompt)
|
|
|
|
def replace_concepts_with_triggers(self, prompt:str, load_concepts_callback: Callable[[list], any])->str:
|
|
'''
|
|
Given a prompt string that contains `<concept_name>` tags, replace
|
|
these tags with the appropriate trigger.
|
|
|
|
If any `<concept_name>` tags are found, `load_concepts_callback()` is called with a list
|
|
of `concepts_name` strings.
|
|
'''
|
|
concepts = self.match_concept.findall(prompt)
|
|
if not concepts:
|
|
return prompt
|
|
load_concepts_callback(concepts)
|
|
|
|
def do_replace(match)->str:
|
|
return self.concept_to_trigger(match.group(1)) or f'<{match.group(1)}>'
|
|
return self.match_concept.sub(do_replace, prompt)
|
|
|
|
def get_concept_file(self, concept_name:str, file_name:str='learned_embeds.bin' , local_only:bool=False)->str:
|
|
if not self.concept_is_downloaded(concept_name) and not local_only:
|
|
self.download_concept(concept_name)
|
|
path = os.path.join(self._concept_path(concept_name), file_name)
|
|
return path if os.path.exists(path) else None
|
|
|
|
def concept_is_downloaded(self, concept_name)->bool:
|
|
concept_directory = self._concept_path(concept_name)
|
|
return os.path.exists(concept_directory)
|
|
|
|
def download_concept(self,concept_name)->bool:
|
|
repo_id = self._concept_id(concept_name)
|
|
dest = self._concept_path(concept_name)
|
|
|
|
access_token = HfFolder.get_token()
|
|
header = [("Authorization", f'Bearer {access_token}')] if access_token else []
|
|
opener = request.build_opener()
|
|
opener.addheaders = header
|
|
request.install_opener(opener)
|
|
|
|
os.makedirs(dest, exist_ok=True)
|
|
succeeded = True
|
|
|
|
bytes = 0
|
|
def tally_download_size(chunk, size, total):
|
|
nonlocal bytes
|
|
if chunk==0:
|
|
bytes += total
|
|
|
|
print(f'>> Downloading {repo_id}...',end='')
|
|
try:
|
|
for file in ('README.md','learned_embeds.bin','token_identifier.txt','type_of_concept.txt'):
|
|
url = hf_hub_url(repo_id, file)
|
|
request.urlretrieve(url, os.path.join(dest,file),reporthook=tally_download_size)
|
|
except ul_error.HTTPError as e:
|
|
if e.code==404:
|
|
print(f'This concept is not known to the Hugging Face library. Generation will continue without the concept.')
|
|
else:
|
|
print(f'Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)')
|
|
os.rmdir(dest)
|
|
return False
|
|
except ul_error.URLError as e:
|
|
print(f'ERROR: {str(e)}. This may reflect a network issue. Generation will continue without the concept.')
|
|
os.rmdir(dest)
|
|
return False
|
|
print('...{:.2f}Kb'.format(bytes/1024))
|
|
return succeeded
|
|
|
|
def _concept_id(self, concept_name:str)->str:
|
|
return f'sd-concepts-library/{concept_name}'
|
|
|
|
def _concept_path(self, concept_name:str)->str:
|
|
return os.path.join(self.root,'models','sd-concepts-library',concept_name)
|