mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
c238a7f18b
Upgrade pydantic and fastapi to latest. - pydantic~=2.4.2 - fastapi~=103.2 - fastapi-events~=0.9.1 **Big Changes** There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes. **Invocations** The biggest change relates to invocation creation, instantiation and validation. Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie. Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`. With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation. This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method. In the end, this implementation is cleaner. **Invocation Fields** In pydantic v2, you can no longer directly add or remove fields from a model. Previously, we did this to add the `type` field to invocations. **Invocation Decorators** With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper. A similar technique is used for `invocation_output()`. **Minor Changes** There are a number of minor changes around the pydantic v2 models API. **Protected `model_` Namespace** All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_". Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple. ```py class IPAdapterModelField(BaseModel): model_name: str = Field(description="Name of the IP-Adapter model") base_model: BaseModelType = Field(description="Base model") model_config = ConfigDict(protected_namespaces=()) ``` **Model Serialization** Pydantic models no longer have `Model.dict()` or `Model.json()`. Instead, we use `Model.model_dump()` or `Model.model_dump_json()`. **Model Deserialization** Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions. Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model. ```py adapter_graph = TypeAdapter(Graph) deserialized_graph_from_json = adapter_graph.validate_json(graph_json) deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict) ``` **Field Customisation** Pydantic `Field`s no longer accept arbitrary args. Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field. **Schema Customisation** FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec. This necessitates two changes: - Our schema customization logic has been revised - Schema parsing to build node templates has been revised The specific aren't important, but this does present additional surface area for bugs. **Performance Improvements** Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node. I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
136 lines
4.4 KiB
Python
136 lines
4.4 KiB
Python
import pytest
|
|
from pydantic import BaseModel, Field
|
|
|
|
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
|
from invokeai.app.services.item_storage.item_storage_sqlite import SqliteItemStorage
|
|
from invokeai.app.services.shared.sqlite import SqliteDatabase
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
|
|
class TestModel(BaseModel):
|
|
id: str = Field(description="ID")
|
|
name: str = Field(description="Name")
|
|
|
|
|
|
@pytest.fixture
|
|
def db() -> SqliteItemStorage[TestModel]:
|
|
sqlite_db = SqliteDatabase(InvokeAIAppConfig(use_memory_db=True), InvokeAILogger.get_logger())
|
|
sqlite_item_storage = SqliteItemStorage[TestModel](db=sqlite_db, table_name="test", id_field="id")
|
|
return sqlite_item_storage
|
|
|
|
|
|
def test_sqlite_service_can_create_and_get(db: SqliteItemStorage[TestModel]):
|
|
db.set(TestModel(id="1", name="Test"))
|
|
assert db.get("1") == TestModel(id="1", name="Test")
|
|
|
|
|
|
def test_sqlite_service_can_list(db: SqliteItemStorage[TestModel]):
|
|
db.set(TestModel(id="1", name="Test"))
|
|
db.set(TestModel(id="2", name="Test"))
|
|
db.set(TestModel(id="3", name="Test"))
|
|
results = db.list()
|
|
assert results.page == 0
|
|
assert results.pages == 1
|
|
assert results.per_page == 10
|
|
assert results.total == 3
|
|
assert results.items == [
|
|
TestModel(id="1", name="Test"),
|
|
TestModel(id="2", name="Test"),
|
|
TestModel(id="3", name="Test"),
|
|
]
|
|
|
|
|
|
def test_sqlite_service_can_delete(db: SqliteItemStorage[TestModel]):
|
|
db.set(TestModel(id="1", name="Test"))
|
|
db.delete("1")
|
|
assert db.get("1") is None
|
|
|
|
|
|
def test_sqlite_service_calls_set_callback(db: SqliteItemStorage[TestModel]):
|
|
called = False
|
|
|
|
def on_changed(item: TestModel):
|
|
nonlocal called
|
|
called = True
|
|
|
|
db.on_changed(on_changed)
|
|
db.set(TestModel(id="1", name="Test"))
|
|
assert called
|
|
|
|
|
|
def test_sqlite_service_calls_delete_callback(db: SqliteItemStorage[TestModel]):
|
|
called = False
|
|
|
|
def on_deleted(item_id: str):
|
|
nonlocal called
|
|
called = True
|
|
|
|
db.on_deleted(on_deleted)
|
|
db.set(TestModel(id="1", name="Test"))
|
|
db.delete("1")
|
|
assert called
|
|
|
|
|
|
def test_sqlite_service_can_list_with_pagination(db: SqliteItemStorage[TestModel]):
|
|
db.set(TestModel(id="1", name="Test"))
|
|
db.set(TestModel(id="2", name="Test"))
|
|
db.set(TestModel(id="3", name="Test"))
|
|
results = db.list(page=0, per_page=2)
|
|
assert results.page == 0
|
|
assert results.pages == 2
|
|
assert results.per_page == 2
|
|
assert results.total == 3
|
|
assert results.items == [TestModel(id="1", name="Test"), TestModel(id="2", name="Test")]
|
|
|
|
|
|
def test_sqlite_service_can_list_with_pagination_and_offset(db: SqliteItemStorage[TestModel]):
|
|
db.set(TestModel(id="1", name="Test"))
|
|
db.set(TestModel(id="2", name="Test"))
|
|
db.set(TestModel(id="3", name="Test"))
|
|
results = db.list(page=1, per_page=2)
|
|
assert results.page == 1
|
|
assert results.pages == 2
|
|
assert results.per_page == 2
|
|
assert results.total == 3
|
|
assert results.items == [TestModel(id="3", name="Test")]
|
|
|
|
|
|
def test_sqlite_service_can_search(db: SqliteItemStorage[TestModel]):
|
|
db.set(TestModel(id="1", name="Test"))
|
|
db.set(TestModel(id="2", name="Test"))
|
|
db.set(TestModel(id="3", name="Test"))
|
|
results = db.search(query="Test")
|
|
assert results.page == 0
|
|
assert results.pages == 1
|
|
assert results.per_page == 10
|
|
assert results.total == 3
|
|
assert results.items == [
|
|
TestModel(id="1", name="Test"),
|
|
TestModel(id="2", name="Test"),
|
|
TestModel(id="3", name="Test"),
|
|
]
|
|
|
|
|
|
def test_sqlite_service_can_search_with_pagination(db: SqliteItemStorage[TestModel]):
|
|
db.set(TestModel(id="1", name="Test"))
|
|
db.set(TestModel(id="2", name="Test"))
|
|
db.set(TestModel(id="3", name="Test"))
|
|
results = db.search(query="Test", page=0, per_page=2)
|
|
assert results.page == 0
|
|
assert results.pages == 2
|
|
assert results.per_page == 2
|
|
assert results.total == 3
|
|
assert results.items == [TestModel(id="1", name="Test"), TestModel(id="2", name="Test")]
|
|
|
|
|
|
def test_sqlite_service_can_search_with_pagination_and_offset(db: SqliteItemStorage[TestModel]):
|
|
db.set(TestModel(id="1", name="Test"))
|
|
db.set(TestModel(id="2", name="Test"))
|
|
db.set(TestModel(id="3", name="Test"))
|
|
results = db.search(query="Test", page=1, per_page=2)
|
|
assert results.page == 1
|
|
assert results.pages == 2
|
|
assert results.per_page == 2
|
|
assert results.total == 3
|
|
assert results.items == [TestModel(id="3", name="Test")]
|