mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
d176fb07cd
Allowed values are 'auto', 'float32', 'autocast', 'float16'. If not specified or 'auto' a working precision is automatically selected based on the torch device. Context: #526 Deprecated --full_precision / -F Tested on both cuda and cpu by calling scripts/dream.py without arguments and checked the auto configuration worked. With --precision=auto/float32/autocast/float16 it performs as expected, either working or failing with a reasonable error. Also checked Img2Img.
62 lines
2.3 KiB
Python
62 lines
2.3 KiB
Python
'''
|
|
ldm.dream.generator.txt2img inherits from ldm.dream.generator
|
|
'''
|
|
|
|
import torch
|
|
import numpy as np
|
|
from ldm.dream.generator.base import Generator
|
|
|
|
class Txt2Img(Generator):
|
|
def __init__(self, model, precision):
|
|
super().__init__(model, precision)
|
|
|
|
@torch.no_grad()
|
|
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
conditioning,width,height,step_callback=None,**kwargs):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and the initial image
|
|
Return value depends on the seed at the time you call it
|
|
kwargs are 'width' and 'height'
|
|
"""
|
|
uc, c = conditioning
|
|
|
|
@torch.no_grad()
|
|
def make_image(x_T):
|
|
shape = [
|
|
self.latent_channels,
|
|
height // self.downsampling_factor,
|
|
width // self.downsampling_factor,
|
|
]
|
|
samples, _ = sampler.sample(
|
|
batch_size = 1,
|
|
S = steps,
|
|
x_T = x_T,
|
|
conditioning = c,
|
|
shape = shape,
|
|
verbose = False,
|
|
unconditional_guidance_scale = cfg_scale,
|
|
unconditional_conditioning = uc,
|
|
eta = ddim_eta,
|
|
img_callback = step_callback
|
|
)
|
|
return self.sample_to_image(samples)
|
|
|
|
return make_image
|
|
|
|
|
|
# returns a tensor filled with random numbers from a normal distribution
|
|
def get_noise(self,width,height):
|
|
device = self.model.device
|
|
if device.type == 'mps':
|
|
return torch.randn([1,
|
|
self.latent_channels,
|
|
height // self.downsampling_factor,
|
|
width // self.downsampling_factor],
|
|
device='cpu').to(device)
|
|
else:
|
|
return torch.randn([1,
|
|
self.latent_channels,
|
|
height // self.downsampling_factor,
|
|
width // self.downsampling_factor],
|
|
device=device)
|