InvokeAI/invokeai/app/invocations/ip_adapter.py
2024-04-13 13:52:10 +05:30

167 lines
7.3 KiB
Python

from builtins import float
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, TensorField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
IPAdapterCheckpointConfig,
IPAdapterInvokeAIConfig,
ModelType,
)
class IPAdapterField(BaseModel):
image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.")
image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the IP-Adapter.")
target_blocks: List[str] = Field(default=[], description="The IP Adapter blocks to apply")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
mask: Optional[TensorField] = Field(
default=None,
description="The bool mask associated with this IP-Adapter. Excluded regions should be set to False, included "
"regions should be set to True.",
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("ip_adapter_output")
class IPAdapterOutput(BaseInvocationOutput):
# Outputs
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
CLIP_VISION_MODEL_MAP = {"ViT-H": "ip_adapter_sd_image_encoder", "ViT-G": "ip_adapter_sdxl_image_encoder"}
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.4.0")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
# Inputs
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).", ui_order=1)
ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.",
title="IP-Adapter Model",
input=Input.Direct,
ui_order=-1,
ui_type=UIType.IPAdapterModel,
)
clip_vision_model: Literal["ViT-H", "ViT-G"] = InputField(
description="CLIP Vision model to use. Overrides model settings. Mandatory for checkpoint models.",
default="ViT-H",
ui_order=2,
)
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
)
method: Literal["full", "style", "composition"] = InputField(
default="full", description="The method to apply the IP-Adapter"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this IP-Adapter applies to."
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
assert isinstance(ip_adapter_info, (IPAdapterInvokeAIConfig, IPAdapterCheckpointConfig))
if isinstance(ip_adapter_info, IPAdapterInvokeAIConfig):
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
else:
image_encoder_model_name = CLIP_VISION_MODEL_MAP[self.clip_vision_model]
image_encoder_model = self._get_image_encoder(context, image_encoder_model_name)
target_blocks = ["block"]
if self.method == "style":
if ip_adapter_info.base == "sd-1":
target_blocks = ["up_blocks.1"]
if ip_adapter_info.base == "sdxl":
target_blocks = ["up_blocks.0.attentions.1"]
elif self.method == "composition":
if ip_adapter_info.base == "sd-1":
target_blocks = ["down_blocks.2", "mid_block"]
if ip_adapter_info.base == "sdxl":
target_blocks = ["down_blocks.2.attentions.1"]
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=ModelIdentifierField.from_config(image_encoder_model),
weight=self.weight,
target_blocks=target_blocks,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
mask=self.mask,
),
)
def _get_image_encoder(self, context: InvocationContext, image_encoder_model_name: str) -> AnyModelConfig:
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
if not len(image_encoder_models) > 0:
context.logger.warning(
f"The image encoder required by this IP Adapter ({image_encoder_model_name}) is not installed. \
Downloading and installing now. This may take a while."
)
installer = context._services.model_manager.install
job = installer.heuristic_import(f"InvokeAI/{image_encoder_model_name}")
installer.wait_for_job(job, timeout=600) # Wait for up to 10 minutes
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
if len(image_encoder_models) == 0:
context.logger.error("Error while fetching CLIP Vision Image Encoder")
assert len(image_encoder_models) == 1
return image_encoder_models[0]