mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
233 lines
6.9 KiB
Python
233 lines
6.9 KiB
Python
import importlib
|
|
|
|
import torch
|
|
import numpy as np
|
|
import math
|
|
from collections import abc
|
|
from einops import rearrange
|
|
from functools import partial
|
|
|
|
import multiprocessing as mp
|
|
from threading import Thread
|
|
from queue import Queue
|
|
|
|
from inspect import isfunction
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
|
|
def log_txt_as_img(wh, xc, size=10):
|
|
# wh a tuple of (width, height)
|
|
# xc a list of captions to plot
|
|
b = len(xc)
|
|
txts = list()
|
|
for bi in range(b):
|
|
txt = Image.new('RGB', wh, color='white')
|
|
draw = ImageDraw.Draw(txt)
|
|
font = ImageFont.load_default()
|
|
nc = int(40 * (wh[0] / 256))
|
|
lines = '\n'.join(
|
|
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
|
|
)
|
|
|
|
try:
|
|
draw.text((0, 0), lines, fill='black', font=font)
|
|
except UnicodeEncodeError:
|
|
print('Cant encode string for logging. Skipping.')
|
|
|
|
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
|
txts.append(txt)
|
|
txts = np.stack(txts)
|
|
txts = torch.tensor(txts)
|
|
return txts
|
|
|
|
|
|
def ismap(x):
|
|
if not isinstance(x, torch.Tensor):
|
|
return False
|
|
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
|
|
|
|
|
def isimage(x):
|
|
if not isinstance(x, torch.Tensor):
|
|
return False
|
|
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
|
|
|
|
|
def exists(x):
|
|
return x is not None
|
|
|
|
|
|
def default(val, d):
|
|
if exists(val):
|
|
return val
|
|
return d() if isfunction(d) else d
|
|
|
|
|
|
def mean_flat(tensor):
|
|
"""
|
|
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
|
Take the mean over all non-batch dimensions.
|
|
"""
|
|
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
|
|
|
|
|
def count_params(model, verbose=False):
|
|
total_params = sum(p.numel() for p in model.parameters())
|
|
if verbose:
|
|
print(
|
|
f'{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
|
|
)
|
|
return total_params
|
|
|
|
|
|
def instantiate_from_config(config, **kwargs):
|
|
if not 'target' in config:
|
|
if config == '__is_first_stage__':
|
|
return None
|
|
elif config == '__is_unconditional__':
|
|
return None
|
|
raise KeyError('Expected key `target` to instantiate.')
|
|
return get_obj_from_str(config['target'])(
|
|
**config.get('params', dict()), **kwargs
|
|
)
|
|
|
|
|
|
def get_obj_from_str(string, reload=False):
|
|
module, cls = string.rsplit('.', 1)
|
|
if reload:
|
|
module_imp = importlib.import_module(module)
|
|
importlib.reload(module_imp)
|
|
return getattr(importlib.import_module(module, package=None), cls)
|
|
|
|
|
|
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
|
|
# create dummy dataset instance
|
|
|
|
# run prefetching
|
|
if idx_to_fn:
|
|
res = func(data, worker_id=idx)
|
|
else:
|
|
res = func(data)
|
|
Q.put([idx, res])
|
|
Q.put('Done')
|
|
|
|
|
|
def parallel_data_prefetch(
|
|
func: callable,
|
|
data,
|
|
n_proc,
|
|
target_data_type='ndarray',
|
|
cpu_intensive=True,
|
|
use_worker_id=False,
|
|
):
|
|
# if target_data_type not in ["ndarray", "list"]:
|
|
# raise ValueError(
|
|
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
|
|
# )
|
|
if isinstance(data, np.ndarray) and target_data_type == 'list':
|
|
raise ValueError('list expected but function got ndarray.')
|
|
elif isinstance(data, abc.Iterable):
|
|
if isinstance(data, dict):
|
|
print(
|
|
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
|
)
|
|
data = list(data.values())
|
|
if target_data_type == 'ndarray':
|
|
data = np.asarray(data)
|
|
else:
|
|
data = list(data)
|
|
else:
|
|
raise TypeError(
|
|
f'The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}.'
|
|
)
|
|
|
|
if cpu_intensive:
|
|
Q = mp.Queue(1000)
|
|
proc = mp.Process
|
|
else:
|
|
Q = Queue(1000)
|
|
proc = Thread
|
|
# spawn processes
|
|
if target_data_type == 'ndarray':
|
|
arguments = [
|
|
[func, Q, part, i, use_worker_id]
|
|
for i, part in enumerate(np.array_split(data, n_proc))
|
|
]
|
|
else:
|
|
step = (
|
|
int(len(data) / n_proc + 1)
|
|
if len(data) % n_proc != 0
|
|
else int(len(data) / n_proc)
|
|
)
|
|
arguments = [
|
|
[func, Q, part, i, use_worker_id]
|
|
for i, part in enumerate(
|
|
[data[i : i + step] for i in range(0, len(data), step)]
|
|
)
|
|
]
|
|
processes = []
|
|
for i in range(n_proc):
|
|
p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
|
|
processes += [p]
|
|
|
|
# start processes
|
|
print(f'Start prefetching...')
|
|
import time
|
|
|
|
start = time.time()
|
|
gather_res = [[] for _ in range(n_proc)]
|
|
try:
|
|
for p in processes:
|
|
p.start()
|
|
|
|
k = 0
|
|
while k < n_proc:
|
|
# get result
|
|
res = Q.get()
|
|
if res == 'Done':
|
|
k += 1
|
|
else:
|
|
gather_res[res[0]] = res[1]
|
|
|
|
except Exception as e:
|
|
print('Exception: ', e)
|
|
for p in processes:
|
|
p.terminate()
|
|
|
|
raise e
|
|
finally:
|
|
for p in processes:
|
|
p.join()
|
|
print(f'Prefetching complete. [{time.time() - start} sec.]')
|
|
|
|
if target_data_type == 'ndarray':
|
|
if not isinstance(gather_res[0], np.ndarray):
|
|
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
|
|
|
|
# order outputs
|
|
return np.concatenate(gather_res, axis=0)
|
|
elif target_data_type == 'list':
|
|
out = []
|
|
for r in gather_res:
|
|
out.extend(r)
|
|
return out
|
|
else:
|
|
return gather_res
|
|
|
|
def rand_perlin_2d(shape, res, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
|
|
delta = (res[0] / shape[0], res[1] / shape[1])
|
|
d = (shape[0] // res[0], shape[1] // res[1])
|
|
|
|
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1])), dim = -1) % 1
|
|
angles = 2*math.pi*torch.rand(res[0]+1, res[1]+1)
|
|
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1)
|
|
|
|
tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1)
|
|
dot = lambda grad, shift: (torch.stack((grid[:shape[0],:shape[1],0] + shift[0], grid[:shape[0],:shape[1], 1] + shift[1] ), dim = -1) * grad[:shape[0], :shape[1]]).sum(dim = -1)
|
|
|
|
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0])
|
|
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0])
|
|
n01 = dot(tile_grads([0, -1],[1, None]), [0, -1])
|
|
n11 = dot(tile_grads([1, None], [1, None]), [-1,-1])
|
|
t = fade(grid[:shape[0], :shape[1]])
|
|
return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]) |