mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
7e8f364d8d
- All tensors in diffusers code path are now set explicitly to float32 or float16, depending on the --precision flag. - autocast is still used in the ckpt path, since it is being deprecated.
77 lines
3.1 KiB
Python
77 lines
3.1 KiB
Python
'''
|
|
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
|
'''
|
|
import PIL.Image
|
|
import torch
|
|
|
|
from .base import Generator
|
|
from .diffusers_pipeline import StableDiffusionGeneratorPipeline, ConditioningData
|
|
from ...models.diffusion.shared_invokeai_diffusion import ThresholdSettings
|
|
|
|
|
|
class Txt2Img(Generator):
|
|
def __init__(self, model, precision):
|
|
super().__init__(model, precision)
|
|
|
|
@torch.no_grad()
|
|
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
conditioning,width,height,step_callback=None,threshold=0.0,perlin=0.0,
|
|
attention_maps_callback=None,
|
|
**kwargs):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and the initial image
|
|
Return value depends on the seed at the time you call it
|
|
kwargs are 'width' and 'height'
|
|
"""
|
|
self.perlin = perlin
|
|
|
|
# noinspection PyTypeChecker
|
|
pipeline: StableDiffusionGeneratorPipeline = self.model
|
|
pipeline.scheduler = sampler
|
|
|
|
uc, c, extra_conditioning_info = conditioning
|
|
conditioning_data = (
|
|
ConditioningData(
|
|
uc, c, cfg_scale, extra_conditioning_info,
|
|
threshold = ThresholdSettings(threshold, warmup=0.2) if threshold else None)
|
|
.add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
|
|
|
def make_image(x_T) -> PIL.Image.Image:
|
|
pipeline_output = pipeline.image_from_embeddings(
|
|
latents=torch.zeros_like(x_T,dtype=self.torch_dtype()),
|
|
noise=x_T,
|
|
num_inference_steps=steps,
|
|
conditioning_data=conditioning_data,
|
|
callback=step_callback,
|
|
)
|
|
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
|
|
attention_maps_callback(pipeline_output.attention_map_saver)
|
|
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
|
|
|
return make_image
|
|
|
|
|
|
# returns a tensor filled with random numbers from a normal distribution
|
|
def get_noise(self,width,height):
|
|
device = self.model.device
|
|
# limit noise to only the diffusion image channels, not the mask channels
|
|
input_channels = min(self.latent_channels, 4)
|
|
if self.use_mps_noise or device.type == 'mps':
|
|
x = torch.randn([1,
|
|
input_channels,
|
|
height // self.downsampling_factor,
|
|
width // self.downsampling_factor],
|
|
dtype=self.torch_dtype(),
|
|
device='cpu').to(device)
|
|
else:
|
|
x = torch.randn([1,
|
|
input_channels,
|
|
height // self.downsampling_factor,
|
|
width // self.downsampling_factor],
|
|
dtype=self.torch_dtype(),
|
|
device=device)
|
|
if self.perlin > 0.0:
|
|
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
|
return x
|
|
|