InvokeAI/invokeai/backend/model_manager/config.py
psychedelicious 0f60b1ced4 fix(mm): use .value for model config discriminators
There is a breaking change in python 3.11 related to how enums with `str` as a mixin are formatted. This appears to have not caused any grief for us until now.

Re-jigger the discriminator setup to use `.value` so everything works on both python 3.10 and 3.11.
2024-03-05 23:50:19 +11:00

394 lines
12 KiB
Python

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Configuration definitions for image generation models.
Typical usage:
from invokeai.backend.model_manager import ModelConfigFactory
raw = dict(path='models/sd-1/main/foo.ckpt',
name='foo',
base='sd-1',
type='main',
config='configs/stable-diffusion/v1-inference.yaml',
variant='normal',
format='checkpoint'
)
config = ModelConfigFactory.make_config(raw)
print(config.name)
Validation errors will raise an InvalidModelConfigException error.
"""
import time
from enum import Enum
from typing import Literal, Optional, Type, Union
import torch
from diffusers.models.modeling_utils import ModelMixin
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
from typing_extensions import Annotated, Any, Dict
from invokeai.app.util.misc import uuid_string
from ..raw_model import RawModel
# ModelMixin is the base class for all diffusers and transformers models
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module]
class InvalidModelConfigException(Exception):
"""Exception for when config parser doesn't recognized this combination of model type and format."""
class BaseModelType(str, Enum):
"""Base model type."""
Any = "any"
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
# Kandinsky2_1 = "kandinsky-2.1"
class ModelType(str, Enum):
"""Model type."""
ONNX = "onnx"
Main = "main"
Vae = "vae"
Lora = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
T2IAdapter = "t2i_adapter"
class SubModelType(str, Enum):
"""Submodel type."""
UNet = "unet"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
class ModelVariantType(str, Enum):
"""Variant type."""
Normal = "normal"
Inpaint = "inpaint"
Depth = "depth"
class ModelFormat(str, Enum):
"""Storage format of model."""
Diffusers = "diffusers"
Checkpoint = "checkpoint"
Lycoris = "lycoris"
Onnx = "onnx"
Olive = "olive"
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
InvokeAI = "invokeai"
class SchedulerPredictionType(str, Enum):
"""Scheduler prediction type."""
Epsilon = "epsilon"
VPrediction = "v_prediction"
Sample = "sample"
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
DEFAULT = "" # model files without "fp16" or other qualifier - empty str
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
OPENVINO = "openvino"
FLAX = "flax"
class ModelSourceType(str, Enum):
"""Model source type."""
Path = "path"
Url = "url"
HFRepoID = "hf_repo_id"
CivitAI = "civitai"
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
key: str = Field(description="A unique key for this model.", default_factory=uuid_string)
hash: str = Field(description="The hash of the model file(s).")
path: str = Field(
description="Path to the model on the filesystem. Relative paths are relative to the Invoke root directory."
)
name: str = Field(description="Name of the model.")
base: BaseModelType = Field(description="The base model.")
description: Optional[str] = Field(description="Model description", default=None)
source: str = Field(description="The original source of the model (path, URL or repo_id).")
source_type: ModelSourceType = Field(description="The type of source")
source_api_response: Optional[str] = Field(
description="The original API response from the source, as stringified JSON.", default=None
)
trigger_words: Optional[set[str]] = Field(description="Set of trigger words for this model", default=None)
model_config = ConfigDict(use_enum_values=False, validate_assignment=True)
class CheckpointConfigBase(ModelConfigBase):
"""Model config for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
config_path: str = Field(description="path to the checkpoint model config file")
converted_at: Optional[float] = Field(
description="When this model was last converted to diffusers", default_factory=time.time
)
class DiffusersConfigBase(ModelConfigBase):
"""Model config for diffusers-style models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.DEFAULT
class LoRALycorisConfig(ModelConfigBase):
"""Model config for LoRA/Lycoris models."""
type: Literal[ModelType.Lora] = ModelType.Lora
format: Literal[ModelFormat.Lycoris] = ModelFormat.Lycoris
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Lora.value}.{ModelFormat.Lycoris.value}")
class LoRADiffusersConfig(ModelConfigBase):
"""Model config for LoRA/Diffusers models."""
type: Literal[ModelType.Lora] = ModelType.Lora
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Lora.value}.{ModelFormat.Diffusers.value}")
class VaeCheckpointConfig(CheckpointConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.Vae] = ModelType.Vae
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Vae.value}.{ModelFormat.Checkpoint.value}")
class VaeDiffusersConfig(ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
type: Literal[ModelType.Vae] = ModelType.Vae
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Vae.value}.{ModelFormat.Diffusers.value}")
class ControlNetDiffusersConfig(DiffusersConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Diffusers.value}")
class ControlNetCheckpointConfig(CheckpointConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Checkpoint.value}")
class TextualInversionFileConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFile] = ModelFormat.EmbeddingFile
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFile.value}")
class TextualInversionFolderConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFolder] = ModelFormat.EmbeddingFolder
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFolder.value}")
class MainCheckpointConfig(CheckpointConfigBase):
"""Model config for main checkpoint models."""
type: Literal[ModelType.Main] = ModelType.Main
variant: ModelVariantType = ModelVariantType.Normal
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
class MainDiffusersConfig(DiffusersConfigBase):
"""Model config for main diffusers models."""
type: Literal[ModelType.Main] = ModelType.Main
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
class IPAdapterConfig(ModelConfigBase):
"""Model config for IP Adaptor format models."""
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
class CLIPVisionDiffusersConfig(ModelConfigBase):
"""Model config for ClipVision."""
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPVision.value}.{ModelFormat.Diffusers.value}")
class T2IAdapterConfig(ModelConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
format: Literal[ModelFormat.Diffusers]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T2IAdapter.value}.{ModelFormat.Diffusers.value}")
def get_model_discriminator_value(v: Any) -> str:
"""
Computes the discriminator value for a model config.
https://docs.pydantic.dev/latest/concepts/unions/#discriminated-unions-with-callable-discriminator
"""
format_ = None
type_ = None
if isinstance(v, dict):
format_ = v.get("format")
if isinstance(format_, Enum):
format_ = format_.value
type_ = v.get("type")
if isinstance(type_, Enum):
type_ = type_.value
else:
format_ = v.format.value
type_ = v.type.value
v = f"{type_}.{format_}"
return v
AnyModelConfig = Annotated[
Union[
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
Annotated[VaeDiffusersConfig, VaeDiffusersConfig.get_tag()],
Annotated[VaeCheckpointConfig, VaeCheckpointConfig.get_tag()],
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALycorisConfig, LoRALycorisConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterConfig, IPAdapterConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
class ModelConfigFactory(object):
"""Class for parsing config dicts into StableDiffusion Config obects."""
@classmethod
def make_config(
cls,
model_data: Union[Dict[str, Any], AnyModelConfig],
key: Optional[str] = None,
dest_class: Optional[Type[ModelConfigBase]] = None,
timestamp: Optional[float] = None,
) -> AnyModelConfig:
"""
Return the appropriate config object from raw dict values.
:param model_data: A raw dict corresponding the obect fields to be
parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase
object, which will be passed through unchanged.
:param dest_class: The config class to be returned. If not provided, will
be selected automatically.
"""
model: Optional[ModelConfigBase] = None
if isinstance(model_data, ModelConfigBase):
model = model_data
elif dest_class:
model = dest_class.model_validate(model_data)
else:
# mypy doesn't typecheck TypeAdapters well?
model = AnyModelConfigValidator.validate_python(model_data) # type: ignore
assert model is not None
if key:
model.key = key
if isinstance(model, CheckpointConfigBase) and timestamp is not None:
model.converted_at = timestamp
return model # type: ignore