mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
865 lines
34 KiB
Python
Executable File
865 lines
34 KiB
Python
Executable File
#!/usr/bin/env python
|
||
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
||
# Before running stable-diffusion on an internet-isolated machine,
|
||
# run this script from one with internet connectivity. The
|
||
# two machines must share a common .cache directory.
|
||
#
|
||
# Coauthor: Kevin Turner http://github.com/keturn
|
||
#
|
||
print('Loading Python libraries...\n')
|
||
import argparse
|
||
import os
|
||
import io
|
||
import re
|
||
import shutil
|
||
import sys
|
||
import traceback
|
||
import warnings
|
||
from pathlib import Path
|
||
from typing import Dict, Union
|
||
from urllib import request
|
||
|
||
import requests
|
||
import transformers
|
||
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
||
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||
from ldm.invoke.devices import choose_precision, choose_torch_device
|
||
from getpass_asterisk import getpass_asterisk
|
||
from huggingface_hub import HfFolder, hf_hub_url, login as hf_hub_login, whoami as hf_whoami
|
||
from huggingface_hub.utils._errors import RevisionNotFoundError
|
||
from omegaconf import OmegaConf
|
||
from omegaconf.dictconfig import DictConfig
|
||
from tqdm import tqdm
|
||
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, CLIPSegForImageSegmentation
|
||
from tempfile import TemporaryFile
|
||
|
||
from ldm.invoke.globals import Globals, global_cache_dir, global_config_dir
|
||
from ldm.invoke.readline import generic_completer
|
||
|
||
warnings.filterwarnings('ignore')
|
||
import torch
|
||
transformers.logging.set_verbosity_error()
|
||
|
||
try:
|
||
from ldm.invoke.model_manager import ModelManager
|
||
except ImportError:
|
||
sys.path.append('.')
|
||
from ldm.invoke.model_manager import ModelManager
|
||
|
||
#--------------------------globals-----------------------
|
||
Model_dir = 'models'
|
||
Weights_dir = 'ldm/stable-diffusion-v1/'
|
||
|
||
# the initial "configs" dir is now bundled with the `config` package
|
||
Dataset_path = Path(__file__).parent / "configs" / 'INITIAL_MODELS.yaml'
|
||
|
||
Default_config_file = Path (global_config_dir()) / 'models.yaml'
|
||
SD_Configs = Path (global_config_dir()) / 'stable-diffusion'
|
||
|
||
Datasets = OmegaConf.load(Dataset_path)
|
||
completer = generic_completer(['yes','no'])
|
||
|
||
Config_preamble = '''# This file describes the alternative machine learning models
|
||
# available to InvokeAI script.
|
||
#
|
||
# To add a new model, follow the examples below. Each
|
||
# model requires a model config file, a weights file,
|
||
# and the width and height of the images it
|
||
# was trained on.
|
||
'''
|
||
|
||
#--------------------------------------------
|
||
def postscript(errors: None):
|
||
if not any(errors):
|
||
message=f'''
|
||
** Model Installation Successful **
|
||
|
||
You're all set!
|
||
|
||
---
|
||
|
||
If you installed manually from source or with 'pip install': activate the virtual environment
|
||
then run one of the following commands to start InvokeAI.
|
||
|
||
Web UI:
|
||
invoke.py --web # (connect to http://localhost:9090)
|
||
invoke.py --web --host 0.0.0.0 # (connect to http://your-lan-ip:9090 from another computer on the local network)
|
||
|
||
Command-line interface:
|
||
invoke.py
|
||
|
||
---
|
||
|
||
If you installed using an installation script, run:
|
||
|
||
{Globals.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
|
||
|
||
Add the '--help' argument to see all of the command-line switches available for use.
|
||
|
||
Have fun!
|
||
'''
|
||
|
||
else:
|
||
message=f"\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
|
||
for err in errors:
|
||
message += f"\t - {err}\n"
|
||
message += "Please check the logs above and correct any issues."
|
||
|
||
print(message)
|
||
|
||
#---------------------------------------------
|
||
def yes_or_no(prompt:str, default_yes=True):
|
||
completer.set_options(['yes','no'])
|
||
completer.complete_extensions(None) # turn off path-completion mode
|
||
default = "y" if default_yes else 'n'
|
||
response = input(f'{prompt} [{default}] ') or default
|
||
if default_yes:
|
||
return response[0] not in ('n','N')
|
||
else:
|
||
return response[0] in ('y','Y')
|
||
|
||
#---------------------------------------------
|
||
def user_wants_to_download_weights()->str:
|
||
'''
|
||
Returns one of "skip", "recommended" or "customized"
|
||
'''
|
||
print('''You can download and configure the weights files manually or let this
|
||
script do it for you. Manual installation is described at:
|
||
|
||
https://invoke-ai.github.io/InvokeAI/installation/020_INSTALL_MANUAL/
|
||
|
||
You may download the recommended models (about 10GB total), select a customized set, or
|
||
completely skip this step.
|
||
'''
|
||
)
|
||
completer.set_options(['recommended','customized','skip'])
|
||
completer.complete_extensions(None) # turn off path-completion mode
|
||
selection = None
|
||
while selection is None:
|
||
choice = input('Download <r>ecommended models, <a>ll models, <c>ustomized list, or <s>kip this step? [r]: ')
|
||
if choice.startswith(('r','R')) or len(choice)==0:
|
||
selection = 'recommended'
|
||
elif choice.startswith(('c','C')):
|
||
selection = 'customized'
|
||
elif choice.startswith(('a','A')):
|
||
selection = 'all'
|
||
elif choice.startswith(('s','S')):
|
||
selection = 'skip'
|
||
return selection
|
||
|
||
#---------------------------------------------
|
||
def select_datasets(action:str):
|
||
done = False
|
||
while not done:
|
||
datasets = dict()
|
||
dflt = None # the first model selected will be the default; TODO let user change
|
||
counter = 1
|
||
|
||
if action == 'customized':
|
||
print('''
|
||
Choose the weight file(s) you wish to download. Before downloading you
|
||
will be given the option to view and change your selections.
|
||
'''
|
||
)
|
||
for ds in Datasets.keys():
|
||
recommended = Datasets[ds].get('recommended',False)
|
||
r_str = '(recommended)' if recommended else ''
|
||
print(f'[{counter}] {ds}:\n {Datasets[ds]["description"]} {r_str}')
|
||
if yes_or_no(' Download?',default_yes=recommended):
|
||
datasets[ds]=counter
|
||
counter += 1
|
||
else:
|
||
for ds in Datasets.keys():
|
||
if Datasets[ds].get('recommended',False):
|
||
datasets[ds]=counter
|
||
counter += 1
|
||
|
||
print('The following weight files will be downloaded:')
|
||
for ds in datasets:
|
||
dflt = '*' if dflt is None else ''
|
||
print(f' [{datasets[ds]}] {ds}{dflt}')
|
||
print("*default")
|
||
ok_to_download = yes_or_no('Ok to download?')
|
||
if not ok_to_download:
|
||
if yes_or_no('Change your selection?'):
|
||
action = 'customized'
|
||
pass
|
||
else:
|
||
done = True
|
||
else:
|
||
done = True
|
||
return datasets if ok_to_download else None
|
||
|
||
#---------------------------------------------
|
||
def recommended_datasets()->dict:
|
||
datasets = dict()
|
||
for ds in Datasets.keys():
|
||
if Datasets[ds].get('recommended',False):
|
||
datasets[ds]=True
|
||
return datasets
|
||
|
||
#---------------------------------------------
|
||
def default_dataset()->dict:
|
||
datasets = dict()
|
||
for ds in Datasets.keys():
|
||
if Datasets[ds].get('default',False):
|
||
datasets[ds]=True
|
||
return datasets
|
||
|
||
#---------------------------------------------
|
||
def all_datasets()->dict:
|
||
datasets = dict()
|
||
for ds in Datasets.keys():
|
||
datasets[ds]=True
|
||
return datasets
|
||
|
||
#---------------------------------------------
|
||
def HfLogin(access_token) -> str:
|
||
"""
|
||
Helper for logging in to Huggingface
|
||
The stdout capture is needed to hide the irrelevant "git credential helper" warning
|
||
"""
|
||
|
||
capture = io.StringIO()
|
||
sys.stdout = capture
|
||
try:
|
||
hf_hub_login(token = access_token, add_to_git_credential=False)
|
||
sys.stdout = sys.__stdout__
|
||
except Exception as exc:
|
||
sys.stdout = sys.__stdout__
|
||
print(exc)
|
||
raise exc
|
||
|
||
#-------------------------------Authenticate against Hugging Face
|
||
def authenticate(yes_to_all=False):
|
||
print('** LICENSE AGREEMENT FOR WEIGHT FILES **')
|
||
print("=" * shutil.get_terminal_size()[0])
|
||
print('''
|
||
By downloading the Stable Diffusion weight files from the official Hugging Face
|
||
repository, you agree to have read and accepted the CreativeML Responsible AI License.
|
||
The license terms are located here:
|
||
|
||
https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
||
|
||
''')
|
||
print("=" * shutil.get_terminal_size()[0])
|
||
|
||
if not yes_to_all:
|
||
accepted = False
|
||
while not accepted:
|
||
accepted = yes_or_no('Accept the above License terms?')
|
||
if not accepted:
|
||
print('Please accept the License or Ctrl+C to exit.')
|
||
else:
|
||
print('Thank you!')
|
||
else:
|
||
print("The program was started with a '--yes' flag, which indicates user's acceptance of the above License terms.")
|
||
|
||
# Authenticate to Huggingface using environment variables.
|
||
# If successful, authentication will persist for either interactive or non-interactive use.
|
||
# Default env var expected by HuggingFace is HUGGING_FACE_HUB_TOKEN.
|
||
print("=" * shutil.get_terminal_size()[0])
|
||
print('Authenticating to Huggingface')
|
||
hf_envvars = [ "HUGGING_FACE_HUB_TOKEN", "HUGGINGFACE_TOKEN" ]
|
||
token_found = False
|
||
if not (access_token := HfFolder.get_token()):
|
||
print(f"Huggingface token not found in cache.")
|
||
|
||
for ev in hf_envvars:
|
||
if (access_token := os.getenv(ev)):
|
||
print(f"Token was found in the {ev} environment variable.... Logging in.")
|
||
try:
|
||
HfLogin(access_token)
|
||
continue
|
||
except ValueError:
|
||
print(f"Login failed due to invalid token found in {ev}")
|
||
else:
|
||
print(f"Token was not found in the environment variable {ev}.")
|
||
else:
|
||
print(f"Huggingface token found in cache.")
|
||
try:
|
||
HfLogin(access_token)
|
||
token_found = True
|
||
except ValueError:
|
||
print(f"Login failed due to invalid token found in cache")
|
||
|
||
if not (yes_to_all or token_found):
|
||
print(f''' You may optionally enter your Huggingface token now. InvokeAI
|
||
*will* work without it but you will not be able to automatically
|
||
download some of the Hugging Face style concepts. See
|
||
https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/#using-a-hugging-face-concept
|
||
for more information.
|
||
|
||
Visit https://huggingface.co/settings/tokens to generate a token. (Sign up for an account if needed).
|
||
|
||
Paste the token below using {"Ctrl+Shift+V" if sys.platform == "linux" else "Command+V" if sys.platform == "darwin" else "Ctrl+V, right-click, or Edit>Paste"}.
|
||
|
||
Alternatively, press 'Enter' to skip this step and continue.
|
||
|
||
You may re-run the configuration script again in the future if you do not wish to set the token right now.
|
||
''')
|
||
again = True
|
||
while again:
|
||
try:
|
||
access_token = getpass_asterisk.getpass_asterisk(prompt="HF Token ❯ ")
|
||
HfLogin(access_token)
|
||
access_token = HfFolder.get_token()
|
||
again = False
|
||
except ValueError:
|
||
again = yes_or_no('Failed to log in to Huggingface. Would you like to try again?')
|
||
if not again:
|
||
print('\nRe-run the configuration script whenever you wish to set the token.')
|
||
print('...Continuing...')
|
||
except EOFError:
|
||
# this happens if the user pressed Enter on the prompt without any input; assume this means they don't want to input a token
|
||
# safety net needed against accidental "Enter"?
|
||
print("None provided - continuing")
|
||
again = False
|
||
|
||
elif access_token is None:
|
||
print()
|
||
print("HuggingFace login did not succeed. Some functionality may be limited; see https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/#using-a-hugging-face-concept for more information")
|
||
print()
|
||
print(f"Re-run the configuration script without '--yes' to set the HuggingFace token interactively, or use one of the environment variables: {', '.join(hf_envvars)}")
|
||
|
||
print("=" * shutil.get_terminal_size()[0])
|
||
|
||
return access_token
|
||
|
||
#---------------------------------------------
|
||
# look for legacy model.ckpt in models directory and offer to
|
||
# normalize its name
|
||
def migrate_models_ckpt():
|
||
model_path = os.path.join(Globals.root,Model_dir,Weights_dir)
|
||
if not os.path.exists(os.path.join(model_path,'model.ckpt')):
|
||
return
|
||
new_name = Datasets['stable-diffusion-1.4']['file']
|
||
print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.')
|
||
rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?')
|
||
if rename:
|
||
print(f'model.ckpt => {new_name}')
|
||
os.replace(os.path.join(model_path,'model.ckpt'),os.path.join(model_path,new_name))
|
||
|
||
#---------------------------------------------
|
||
def download_weight_datasets(models:dict, access_token:str, precision:str='float32'):
|
||
migrate_models_ckpt()
|
||
successful = dict()
|
||
for mod in models.keys():
|
||
print(f'{mod}...',file=sys.stderr,end='')
|
||
successful[mod] = _download_repo_or_file(Datasets[mod], access_token, precision=precision)
|
||
return successful
|
||
|
||
def _download_repo_or_file(mconfig:DictConfig, access_token:str, precision:str='float32')->Path:
|
||
path = None
|
||
if mconfig['format'] == 'ckpt':
|
||
path = _download_ckpt_weights(mconfig, access_token)
|
||
else:
|
||
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
|
||
if 'vae' in mconfig and 'repo_id' in mconfig['vae']:
|
||
_download_diffusion_weights(mconfig['vae'], access_token, precision=precision)
|
||
return path
|
||
|
||
def _download_ckpt_weights(mconfig:DictConfig, access_token:str)->Path:
|
||
repo_id = mconfig['repo_id']
|
||
filename = mconfig['file']
|
||
cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir)
|
||
return hf_download_with_resume(
|
||
repo_id=repo_id,
|
||
model_dir=cache_dir,
|
||
model_name=filename,
|
||
access_token=access_token
|
||
)
|
||
|
||
def _download_diffusion_weights(mconfig:DictConfig, access_token:str, precision:str='float32'):
|
||
repo_id = mconfig['repo_id']
|
||
model_class = StableDiffusionGeneratorPipeline if mconfig.get('format',None)=='diffusers' else AutoencoderKL
|
||
extra_arg_list = [{'revision':'fp16'},{}] if precision=='float16' else [{}]
|
||
path = None
|
||
for extra_args in extra_arg_list:
|
||
try:
|
||
path = download_from_hf(
|
||
model_class,
|
||
repo_id,
|
||
cache_subdir='diffusers',
|
||
safety_checker=None,
|
||
**extra_args,
|
||
)
|
||
except OSError as e:
|
||
if str(e).startswith('fp16 is not a valid'):
|
||
print(f'Could not fetch half-precision version of model {repo_id}; fetching full-precision instead')
|
||
else:
|
||
print(f'An unexpected error occurred while downloading the model: {e})')
|
||
if path:
|
||
break
|
||
return path
|
||
|
||
#---------------------------------------------
|
||
def hf_download_with_resume(repo_id:str, model_dir:str, model_name:str, access_token:str=None)->Path:
|
||
model_dest = Path(os.path.join(model_dir, model_name))
|
||
os.makedirs(model_dir, exist_ok=True)
|
||
|
||
url = hf_hub_url(repo_id, model_name)
|
||
|
||
header = {"Authorization": f'Bearer {access_token}'} if access_token else {}
|
||
open_mode = 'wb'
|
||
exist_size = 0
|
||
|
||
if os.path.exists(model_dest):
|
||
exist_size = os.path.getsize(model_dest)
|
||
header['Range'] = f'bytes={exist_size}-'
|
||
open_mode = 'ab'
|
||
|
||
resp = requests.get(url, headers=header, stream=True)
|
||
total = int(resp.headers.get('content-length', 0))
|
||
|
||
if resp.status_code==416: # "range not satisfiable", which means nothing to return
|
||
print(f'* {model_name}: complete file found. Skipping.')
|
||
return model_dest
|
||
elif resp.status_code != 200:
|
||
print(f'** An error occurred during downloading {model_name}: {resp.reason}')
|
||
elif exist_size > 0:
|
||
print(f'* {model_name}: partial file found. Resuming...')
|
||
else:
|
||
print(f'* {model_name}: Downloading...')
|
||
|
||
try:
|
||
if total < 2000:
|
||
print(f'*** ERROR DOWNLOADING {model_name}: {resp.text}')
|
||
return None
|
||
|
||
with open(model_dest, open_mode) as file, tqdm(
|
||
desc=model_name,
|
||
initial=exist_size,
|
||
total=total+exist_size,
|
||
unit='iB',
|
||
unit_scale=True,
|
||
unit_divisor=1000,
|
||
) as bar:
|
||
for data in resp.iter_content(chunk_size=1024):
|
||
size = file.write(data)
|
||
bar.update(size)
|
||
except Exception as e:
|
||
print(f'An error occurred while downloading {model_name}: {str(e)}')
|
||
return None
|
||
return model_dest
|
||
|
||
#---------------------------------------------
|
||
def download_with_progress_bar(model_url:str, model_dest:str, label:str='the'):
|
||
try:
|
||
print(f'Installing {label} model file {model_url}...',end='',file=sys.stderr)
|
||
if not os.path.exists(model_dest):
|
||
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
||
print('',file=sys.stderr)
|
||
request.urlretrieve(model_url,model_dest,ProgressBar(os.path.basename(model_dest)))
|
||
print('...downloaded successfully', file=sys.stderr)
|
||
else:
|
||
print('...exists', file=sys.stderr)
|
||
except Exception:
|
||
print('...download failed')
|
||
print(f'Error downloading {label} model')
|
||
print(traceback.format_exc())
|
||
|
||
#---------------------------------------------
|
||
def update_config_file(successfully_downloaded:dict, opt: dict):
|
||
|
||
config_file = Path(opt.config_file) if opt.config_file is not None else Default_config_file
|
||
|
||
# In some cases (incomplete setup, etc), the default configs directory might be missing.
|
||
# Create it if it doesn't exist.
|
||
# this check is ignored if opt.config_file is specified - user is assumed to know what they
|
||
# are doing if they are passing a custom config file from elsewhere.
|
||
if config_file is Default_config_file and not config_file.parent.exists():
|
||
configs_src = Path(__file__).parent / "configs"
|
||
configs_dest = Path(Globals.root) / "configs"
|
||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||
|
||
yaml = new_config_file_contents(successfully_downloaded, config_file)
|
||
|
||
try:
|
||
backup = None
|
||
if os.path.exists(config_file):
|
||
print(f'** {config_file.name} exists. Renaming to {config_file.stem}.yaml.orig')
|
||
backup=config_file.with_suffix(".yaml.orig")
|
||
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
|
||
if sys.platform == "win32" and backup.is_file():
|
||
backup.unlink()
|
||
config_file.rename(backup)
|
||
|
||
with TemporaryFile() as tmp:
|
||
tmp.write(Config_preamble.encode())
|
||
tmp.write(yaml.encode())
|
||
|
||
with open(str(config_file.expanduser().resolve()), 'wb') as new_config:
|
||
tmp.seek(0)
|
||
new_config.write(tmp.read())
|
||
|
||
except Exception as e:
|
||
print(f'**Error creating config file {config_file}: {str(e)} **')
|
||
if backup is not None:
|
||
print(f'restoring previous config file')
|
||
## workaround, for WinError 183, see above
|
||
if sys.platform == "win32" and config_file.is_file():
|
||
config_file.unlink()
|
||
backup.rename(config_file)
|
||
return
|
||
|
||
print(f'Successfully created new configuration file {config_file}')
|
||
|
||
|
||
#---------------------------------------------
|
||
def new_config_file_contents(successfully_downloaded: dict, config_file: Path) -> str:
|
||
if config_file.exists():
|
||
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
|
||
else:
|
||
conf = OmegaConf.create()
|
||
|
||
# find the VAE file, if there is one
|
||
vaes = {}
|
||
default_selected = False
|
||
|
||
for model in successfully_downloaded:
|
||
stanza = conf[model] if model in conf else { }
|
||
mod = Datasets[model]
|
||
stanza['description'] = mod['description']
|
||
stanza['repo_id'] = mod['repo_id']
|
||
stanza['format'] = mod['format']
|
||
# diffusers don't need width and height (probably .ckpt doesn't either)
|
||
# so we no longer require these in INITIAL_MODELS.yaml
|
||
if 'width' in mod:
|
||
stanza['width'] = mod['width']
|
||
if 'height' in mod:
|
||
stanza['height'] = mod['height']
|
||
if 'file' in mod:
|
||
stanza['weights'] = os.path.relpath(successfully_downloaded[model], start=Globals.root)
|
||
stanza['config'] = os.path.normpath(os.path.join(SD_Configs,mod['config']))
|
||
if 'vae' in mod:
|
||
if 'file' in mod['vae']:
|
||
stanza['vae'] = os.path.normpath(os.path.join(Model_dir, Weights_dir,mod['vae']['file']))
|
||
else:
|
||
stanza['vae'] = mod['vae']
|
||
stanza.pop('default',None) # this will be set later
|
||
|
||
# BUG - the first stanza is always the default. User should select.
|
||
if not default_selected:
|
||
stanza['default'] = True
|
||
default_selected = True
|
||
conf[model] = stanza
|
||
return OmegaConf.to_yaml(conf)
|
||
|
||
#---------------------------------------------
|
||
# this will preload the Bert tokenizer fles
|
||
def download_bert():
|
||
print('Installing bert tokenizer (ignore deprecation errors)...', end='',file=sys.stderr)
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||
from transformers import BertTokenizerFast
|
||
download_from_hf(BertTokenizerFast,'bert-base-uncased')
|
||
print('...success',file=sys.stderr)
|
||
|
||
#---------------------------------------------
|
||
def download_from_hf(model_class:object, model_name:str, cache_subdir:Path=Path('hub'), **kwargs):
|
||
print('',file=sys.stderr) # to prevent tqdm from overwriting
|
||
path = global_cache_dir(cache_subdir)
|
||
model = model_class.from_pretrained(model_name,
|
||
cache_dir=path,
|
||
resume_download=True,
|
||
**kwargs,
|
||
)
|
||
return path if model else None
|
||
|
||
#---------------------------------------------
|
||
def download_clip():
|
||
print('Installing CLIP model (ignore deprecation errors)...',file=sys.stderr)
|
||
version = 'openai/clip-vit-large-patch14'
|
||
print('Tokenizer...',file=sys.stderr, end='')
|
||
download_from_hf(CLIPTokenizer,version)
|
||
print('Text model...',file=sys.stderr, end='')
|
||
download_from_hf(CLIPTextModel,version)
|
||
print('...success',file=sys.stderr)
|
||
|
||
#---------------------------------------------
|
||
def download_realesrgan():
|
||
print('Installing models from RealESRGAN...',file=sys.stderr)
|
||
model_url = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
||
model_dest = os.path.join(Globals.root,'models/realesrgan/realesr-general-x4v3.pth')
|
||
download_with_progress_bar(model_url, model_dest, 'RealESRGAN')
|
||
|
||
def download_gfpgan():
|
||
print('Installing GFPGAN models...',file=sys.stderr)
|
||
for model in (
|
||
[
|
||
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
|
||
'./models/gfpgan/GFPGANv1.4.pth'
|
||
],
|
||
[
|
||
'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth',
|
||
'./models/gfpgan/weights/detection_Resnet50_Final.pth'
|
||
],
|
||
[
|
||
'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth',
|
||
'./models/gfpgan/weights/parsing_parsenet.pth'
|
||
],
|
||
):
|
||
model_url,model_dest = model[0],os.path.join(Globals.root,model[1])
|
||
download_with_progress_bar(model_url, model_dest, 'GFPGAN weights')
|
||
|
||
#---------------------------------------------
|
||
def download_codeformer():
|
||
print('Installing CodeFormer model file...',file=sys.stderr)
|
||
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
||
model_dest = os.path.join(Globals.root,'models/codeformer/codeformer.pth')
|
||
download_with_progress_bar(model_url, model_dest, 'CodeFormer')
|
||
|
||
#---------------------------------------------
|
||
def download_clipseg():
|
||
print('Installing clipseg model for text-based masking...',end='', file=sys.stderr)
|
||
CLIPSEG_MODEL = 'CIDAS/clipseg-rd64-refined'
|
||
try:
|
||
download_from_hf(AutoProcessor,CLIPSEG_MODEL)
|
||
download_from_hf(CLIPSegForImageSegmentation,CLIPSEG_MODEL)
|
||
except Exception:
|
||
print('Error installing clipseg model:')
|
||
print(traceback.format_exc())
|
||
print('...success',file=sys.stderr)
|
||
|
||
#-------------------------------------
|
||
def download_safety_checker():
|
||
print('Installing model for NSFW content detection...',file=sys.stderr)
|
||
try:
|
||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||
from transformers import AutoFeatureExtractor
|
||
except ModuleNotFoundError:
|
||
print('Error installing NSFW checker model:')
|
||
print(traceback.format_exc())
|
||
return
|
||
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
||
print('AutoFeatureExtractor...', end='',file=sys.stderr)
|
||
download_from_hf(AutoFeatureExtractor,safety_model_id)
|
||
print('StableDiffusionSafetyChecker...', end='',file=sys.stderr)
|
||
download_from_hf(StableDiffusionSafetyChecker,safety_model_id)
|
||
print('...success',file=sys.stderr)
|
||
|
||
#-------------------------------------
|
||
def download_weights(opt:dict) -> Union[str, None]:
|
||
|
||
precision = 'float32' if opt.full_precision else choose_precision(torch.device(choose_torch_device()))
|
||
|
||
if opt.yes_to_all:
|
||
models = default_dataset() if opt.default_only else recommended_datasets()
|
||
access_token = authenticate(opt.yes_to_all)
|
||
if len(models)>0:
|
||
successfully_downloaded = download_weight_datasets(models, access_token, precision=precision)
|
||
update_config_file(successfully_downloaded,opt)
|
||
return
|
||
|
||
else:
|
||
choice = user_wants_to_download_weights()
|
||
|
||
if choice == 'recommended':
|
||
models = recommended_datasets()
|
||
elif choice == 'all':
|
||
models = all_datasets()
|
||
elif choice == 'customized':
|
||
models = select_datasets(choice)
|
||
if models is None and yes_or_no('Quit?',default_yes=False):
|
||
sys.exit(0)
|
||
else: # 'skip'
|
||
return
|
||
|
||
access_token = authenticate()
|
||
if access_token is not None:
|
||
HfFolder.save_token(access_token)
|
||
|
||
print('\n** DOWNLOADING WEIGHTS **')
|
||
successfully_downloaded = download_weight_datasets(models, access_token, precision=precision)
|
||
|
||
update_config_file(successfully_downloaded,opt)
|
||
if len(successfully_downloaded) < len(models):
|
||
return "some of the model weights downloads were not successful"
|
||
|
||
#-------------------------------------
|
||
def get_root(root:str=None)->str:
|
||
if root:
|
||
return root
|
||
elif os.environ.get('INVOKEAI_ROOT'):
|
||
return os.environ.get('INVOKEAI_ROOT')
|
||
else:
|
||
return Globals.root
|
||
|
||
#-------------------------------------
|
||
def select_root(root:str, yes_to_all:bool=False):
|
||
default = root or os.path.expanduser('~/invokeai')
|
||
if (yes_to_all):
|
||
return default
|
||
completer.set_default_dir(default)
|
||
completer.complete_extensions(())
|
||
completer.set_line(default)
|
||
directory = input(f"Select a directory in which to install InvokeAI's models and configuration files [{default}]: ").strip(' \\')
|
||
return directory or default
|
||
|
||
#-------------------------------------
|
||
def select_outputs(root:str,yes_to_all:bool=False):
|
||
default = os.path.normpath(os.path.join(root,'outputs'))
|
||
if (yes_to_all):
|
||
return default
|
||
completer.set_default_dir(os.path.expanduser('~'))
|
||
completer.complete_extensions(())
|
||
completer.set_line(default)
|
||
directory = input(f'Select the default directory for image outputs [{default}]: ').strip(' \\')
|
||
return directory or default
|
||
|
||
#-------------------------------------
|
||
def initialize_rootdir(root:str,yes_to_all:bool=False):
|
||
|
||
print(f'** INITIALIZING INVOKEAI RUNTIME DIRECTORY **')
|
||
root_selected = False
|
||
while not root_selected:
|
||
outputs = select_outputs(root,yes_to_all)
|
||
outputs = outputs if os.path.isabs(outputs) else os.path.abspath(os.path.join(Globals.root,outputs))
|
||
|
||
print(f'\nInvokeAI image outputs will be placed into "{outputs}".')
|
||
if not yes_to_all:
|
||
root_selected = yes_or_no('Accept this location?')
|
||
else:
|
||
root_selected = True
|
||
|
||
print(f'\nYou may change the chosen output directory at any time by editing the --outdir options in "{Globals.initfile}",')
|
||
print(f'You may also change the runtime directory by setting the environment variable INVOKEAI_ROOT.\n')
|
||
|
||
enable_safety_checker = True
|
||
if not yes_to_all:
|
||
print('The NSFW (not safe for work) checker blurs out images that potentially contain sexual imagery.')
|
||
print('It can be selectively enabled at run time with --nsfw_checker, and disabled with --no-nsfw_checker.')
|
||
print('The following option will set whether the checker is enabled by default. Like other options, you can')
|
||
print(f'change this setting later by editing the file {Globals.initfile}.')
|
||
print(f"This is NOT recommended for systems with less than 6G VRAM because of the checker's memory requirements.")
|
||
enable_safety_checker = yes_or_no('Enable the NSFW checker by default?',enable_safety_checker)
|
||
|
||
safety_checker = '--nsfw_checker' if enable_safety_checker else '--no-nsfw_checker'
|
||
|
||
for name in ('models','configs','embeddings','text-inversion-data','text-inversion-training-data'):
|
||
os.makedirs(os.path.join(root,name), exist_ok=True)
|
||
|
||
configs_src = Path(__file__).parent / "configs"
|
||
configs_dest = Path(root) / "configs"
|
||
if not os.path.samefile(configs_src, configs_dest):
|
||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||
|
||
init_file = os.path.join(Globals.root,Globals.initfile)
|
||
|
||
print(f'Creating the initialization file at "{init_file}".\n')
|
||
with open(init_file,'w') as f:
|
||
f.write(f'''# InvokeAI initialization file
|
||
# This is the InvokeAI initialization file, which contains command-line default values.
|
||
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
|
||
# or renaming it and then running invokeai-configure again.
|
||
|
||
# the --outdir option controls the default location of image files.
|
||
--outdir="{outputs}"
|
||
|
||
# generation arguments
|
||
{safety_checker}
|
||
|
||
# You may place other frequently-used startup commands here, one or more per line.
|
||
# Examples:
|
||
# --web --host=0.0.0.0
|
||
# --steps=20
|
||
# -Ak_euler_a -C10.0
|
||
#
|
||
''')
|
||
|
||
#-------------------------------------
|
||
class ProgressBar():
|
||
def __init__(self,model_name='file'):
|
||
self.pbar = None
|
||
self.name = model_name
|
||
|
||
def __call__(self, block_num, block_size, total_size):
|
||
if not self.pbar:
|
||
self.pbar=tqdm(desc=self.name,
|
||
initial=0,
|
||
unit='iB',
|
||
unit_scale=True,
|
||
unit_divisor=1000,
|
||
total=total_size)
|
||
self.pbar.update(block_size)
|
||
|
||
#-------------------------------------
|
||
def main():
|
||
parser = argparse.ArgumentParser(description='InvokeAI model downloader')
|
||
parser.add_argument('--interactive',
|
||
dest='interactive',
|
||
action=argparse.BooleanOptionalAction,
|
||
default=True,
|
||
help='run in interactive mode (default) - DEPRECATED')
|
||
parser.add_argument('--skip-sd-weights',
|
||
dest='skip_sd_weights',
|
||
action=argparse.BooleanOptionalAction,
|
||
default=False,
|
||
help='skip downloading the large Stable Diffusion weight files')
|
||
parser.add_argument('--full-precision',
|
||
dest='full_precision',
|
||
action=argparse.BooleanOptionalAction,
|
||
type=bool,
|
||
default=False,
|
||
help='use 32-bit weights instead of faster 16-bit weights')
|
||
parser.add_argument('--yes','-y',
|
||
dest='yes_to_all',
|
||
action='store_true',
|
||
help='answer "yes" to all prompts')
|
||
parser.add_argument('--default_only',
|
||
action='store_true',
|
||
help='when --yes specified, only install the default model')
|
||
parser.add_argument('--config_file',
|
||
'-c',
|
||
dest='config_file',
|
||
type=str,
|
||
default=None,
|
||
help='path to configuration file to create')
|
||
parser.add_argument('--root_dir',
|
||
dest='root',
|
||
type=str,
|
||
default=None,
|
||
help='path to root of install directory')
|
||
opt = parser.parse_args()
|
||
|
||
|
||
# setting a global here
|
||
Globals.root = os.path.expanduser(get_root(opt.root) or '')
|
||
|
||
try:
|
||
# We check for to see if the runtime directory is correctly initialized.
|
||
if Globals.root == '' \
|
||
or not os.path.exists(os.path.join(Globals.root,'invokeai.init')):
|
||
initialize_rootdir(Globals.root,opt.yes_to_all)
|
||
|
||
# Optimistically try to download all required assets. If any errors occur, add them and proceed anyway.
|
||
errors=set()
|
||
|
||
if not opt.interactive:
|
||
print("WARNING: The --(no)-interactive argument is deprecated and will be removed. Use --skip-sd-weights.")
|
||
opt.skip_sd_weights=True
|
||
if opt.skip_sd_weights:
|
||
print('** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **')
|
||
else:
|
||
print('** DOWNLOADING DIFFUSION WEIGHTS **')
|
||
errors.add(download_weights(opt))
|
||
print('\n** DOWNLOADING SUPPORT MODELS **')
|
||
download_bert()
|
||
download_clip()
|
||
download_realesrgan()
|
||
download_gfpgan()
|
||
download_codeformer()
|
||
download_clipseg()
|
||
download_safety_checker()
|
||
postscript(errors=errors)
|
||
except KeyboardInterrupt:
|
||
print('\nGoodbye! Come back soon.')
|
||
except Exception as e:
|
||
print(f'\nA problem occurred during initialization.\nThe error was: "{str(e)}"')
|
||
print(traceback.format_exc())
|
||
|
||
#-------------------------------------
|
||
if __name__ == '__main__':
|
||
main()
|