Files
InvokeAI/invokeai/backend/model_manager/install.py

386 lines
14 KiB
Python

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Install/delete models.
Typical usage:
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_manager import ModelInstall
from invokeai.backend.model_manager.storage import ModelConfigStoreSQL
from invokeai.backend.model_manager.download import DownloadQueue
config = InvokeAIAppConfig.get_config()
store = ModelConfigStoreSQL(config.db_path)
download = DownloadQueue()
installer = ModelInstall(store=store, config=config, download=download)
# register config, don't move path
id: str = installer.register_model('/path/to/model')
# register config, and install model in `models`
id: str = installer.install_model('/path/to/model')
# download some remote models and install them in the background
installer.download('stabilityai/stable-diffusion-2-1')
installer.download('https://civitai.com/api/download/models/154208')
installer.download('runwayml/stable-diffusion-v1-5')
installed_ids = installer.wait_for_downloads()
id1 = installed_ids['stabilityai/stable-diffusion-2-1']
id2 = installed_ids['https://civitai.com/api/download/models/154208']
# unregister, don't delete
installer.unregister(id)
# unregister and delete model from disk
installer.delete_model(id)
# scan directory recursively and install all new models found
ids: List[str] = installer.scan_directory('/path/to/directory')
# unregister any model whose path is no longer valid
ids: List[str] = installer.garbage_collect()
hash: str = installer.hash('/path/to/model') # should be same as id above
The following exceptions may be raised:
DuplicateModelException
UnknownModelTypeException
"""
import tempfile
from abc import ABC, abstractmethod
from pathlib import Path
from shutil import rmtree
from typing import Optional, List, Union, Dict
from pydantic.networks import AnyHttpUrl
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
from .search import ModelSearch
from .storage import ModelConfigStore, ModelConfigStoreYAML, DuplicateModelException
from .download import DownloadQueueBase, DownloadQueue, DownloadJobBase
from .hash import FastModelHash
from .probe import ModelProbe, ModelProbeInfo, InvalidModelException
from .config import (
ModelType,
BaseModelType,
ModelVariantType,
ModelFormat,
SchedulerPredictionType,
)
class ModelInstallBase(ABC):
"""Abstract base class for InvokeAI model installation"""
@abstractmethod
def __init__(
self,
store: Optional[ModelConfigStore] = None,
config: Optional[InvokeAIAppConfig] = None,
logger: Optional[InvokeAILogger] = None,
):
"""
Create ModelInstall object.
:param store: Optional ModelConfigStore. If None passed,
defaults to `configs/models.yaml`.
:param config: Optional InvokeAIAppConfig. If None passed,
uses the system-wide default app config.
:param logger: Optional InvokeAILogger. If None passed,
uses the system-wide default logger.
"""
pass
@abstractmethod
def register(self, model_path: Union[Path, str]) -> str:
"""
Probe and register the model at model_path.
:param model_path: Filesystem Path to the model.
:returns id: The string ID of the registered model.
"""
pass
@abstractmethod
def install(self, model_path: Union[Path, str]) -> str:
"""
Probe, register and install the model in the models directory.
This involves moving the model from its current location into
the models directory handled by InvokeAI.
:param model_path: Filesystem Path to the model.
:returns id: The string ID of the installed model.
"""
pass
@abstractmethod
def download(self, source: Union[str, AnyHttpUrl]) -> DownloadJobBase:
"""
Download and install the model located at remote site.
This will download the model located at `source`,
probe it, and install it into the models directory.
This call is executed asynchronously in a separate
thread, and the returned object is a
invokeai.backend.model_manager.download.DownloadJobBase
object which can be interrogated to get the status of
the download and install process. Call our `wait_for_downloads()`
method to wait for all downloads to complete.
:param source: Either a URL or a HuggingFace repo_id.
:returns queue: DownloadQueueBase object.
"""
pass
@abstractmethod
def wait_for_downloads(self) -> Dict[str, str]:
"""
Wait for all pending downloads to complete.
This will block until all pending downloads have
completed, been cancelled, or errored out. It will
block indefinitely if one or more jobs are in the
paused state.
It will return a dict that maps the source model
URL or repo_id to the ID of the installed model.
"""
pass
@abstractmethod
def unregister(self, id: str):
"""
Unregister the model identified by id.
This removes the model from the registry without
deleting the underlying model from disk.
:param id: The string ID of the model to forget.
:raises UnknownModelException: In the event the ID is unknown.
"""
pass
@abstractmethod
def delete(self, id: str):
"""
Unregister and delete the model identified by id.
This removes the model from the registry and
deletes the underlying model from disk.
:param id: The string ID of the model to forget.
:raises UnknownModelException: In the event the ID is unknown.
:raises OSError: In the event the model cannot be deleted from disk.
"""
pass
@abstractmethod
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]:
"""
Recursively scan directory for new models and register or install them.
:param scan_dir: Path to the directory to scan.
:param install: Install if True, otherwise register in place.
:returns list of IDs: Returns list of IDs of models registered/installed
"""
pass
@abstractmethod
def garbage_collect(self) -> List[str]:
"""
Unregister any models whose paths are no longer valid.
This checks each registered model's path. Models with paths that are
no longer found on disk will be unregistered.
:return List[str]: Return the list of model IDs that were unregistered.
"""
pass
@abstractmethod
def hash(self, model_path: Union[Path, str]) -> str:
"""
Compute and return the fast hash of the model.
:param model_path: Path to the model on disk.
:return str: FastHash of the model for use as an ID.
"""
pass
class ModelInstall(ModelInstallBase):
"""Model installer class handles installation from a local path."""
_config: InvokeAIAppConfig
_logger: InvokeAILogger
_store: ModelConfigStore
_download_queue: DownloadQueueBase
_async_installs: Dict[str, str]
_tmpdir: Optional[tempfile.TemporaryDirectory] # used for downloads
_legacy_configs = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: "v2-inference.yaml",
SchedulerPredictionType.VPrediction: "v2-inference-v.yaml",
},
ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: "v2-inpainting-inference.yaml",
SchedulerPredictionType.VPrediction: "v2-inpainting-inference-v.yaml",
},
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "sd_xl_base.yaml",
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: "sd_xl_refiner.yaml",
},
}
def __init__(
self,
store: Optional[ModelConfigStore] = None,
config: Optional[InvokeAIAppConfig] = None,
logger: Optional[InvokeAILogger] = None,
download: Optional[DownloadQueueBase] = None,
): # noqa D107 - use base class docstrings
self._config = config or InvokeAIAppConfig.get_config()
self._logger = logger or InvokeAILogger.getLogger()
self._store = store or ModelConfigStoreYAML(self._config.model_conf_path)
self._download_queue = download or DownloadQueue()
self._async_installs = dict()
self._tmpdir = None
def register(self, model_path: Union[Path, str]) -> str: # noqa D102
model_path = Path(model_path)
info: ModelProbeInfo = ModelProbe.probe(model_path)
return self._register(model_path, info)
def _register(self, model_path: Path, info: ModelProbeInfo) -> str:
id: str = FastModelHash.hash(model_path)
registration_data = dict(
path=model_path.as_posix(),
name=model_path.stem,
base_model=info.base_type,
model_type=info.model_type,
model_format=info.format,
)
# add 'main' specific fields
if info.model_type == ModelType.Main and info.format == ModelFormat.Checkpoint:
try:
config_file = self._legacy_configs[info.base_type][info.variant_type]
except KeyError as exc:
raise InvalidModelException("Configuration file for this checkpoint could not be determined") from exc
registration_data.update(
config=Path(self._config.legacy_conf_dir, config_file).as_posix(),
)
self._store.add_model(id, registration_data)
return id
def install(self, model_path: Union[Path, str]) -> str: # noqa D102
model_path = Path(model_path)
info: ModelProbeInfo = ModelProbe.probe(model_path)
dest_path = self._config.models_path / info.base_type.value / info.model_type.value / model_path.name
dest_path.parent.mkdir(parents=True, exist_ok=True)
# if path already exists then we jigger the name to make it unique
counter: int = 1
while dest_path.exists():
dest_path = dest_path.with_stem(dest_path.stem + f"_{counter:02d}")
counter += 1
return self._register(
model_path.replace(dest_path),
info,
)
def unregister(self, id: str): # noqa D102
self._store.del_model(id)
def delete(self, id: str): # noqa D102
model = self._store.get_model(id)
rmtree(model.path)
self.unregister(id)
def download(self, source: Union[str, AnyHttpUrl]) -> DownloadJobBase: # noqa D102
# choose a temporary directory inside the models directory
models_dir = self._config.models_path
queue = self._download_queue
self._async_installs[source] = None
def complete_installation(job: DownloadJobBase):
self._logger.info(f"{job.source}: {job.status} filename={job.destination}({job.bytes}/{job.total_bytes})")
if job.status == "completed":
id = self.install(job.destination)
info = self._store.get_model(id)
info.description = f"Downloaded model {info.name}"
info.source_url = str(job.source)
if card_data := job.metadata.get("cardData"):
info.license = card_data.get("license")
if author := job.metadata.get("author"):
info.author = author
if tags := job.metadata.get("tags"):
info.tags = tags
self._store.update_model(id, info)
self._async_installs[job.source] = id
jobs = queue.list_jobs()
if len(jobs) <= 1 and job.status in ["completed", "error", "cancelled"]:
self._tmpdir = None
# note - this is probably not going to work. The tmpdir
# will be deleted before the job actually runs.
# Better to do the cleanup in the callback
self._tmpdir = self._tmpdir or tempfile.TemporaryDirectory(dir=models_dir)
return queue.create_download_job(
source=source, destdir=self._tmpdir.name, event_handlers=[complete_installation]
)
def wait_for_downloads(self) -> Dict[str, str]: # noqa D102
self._download_queue.join()
id_map = self._async_installs
self._async_installs = dict()
return id_map
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
callback = self._scan_install if install else self._scan_register
search = ModelSearch(on_model_found=callback)
self._installed = set()
search.search(scan_dir)
return list(self._installed)
def garbage_collect(self) -> List[str]: # noqa D102
unregistered = list()
for model in self._store.all_models():
path = Path(model.path)
if not path.exists():
self._store.del_model(model.id)
unregistered.append(model.id)
return unregistered
def hash(self, model_path: Union[Path, str]) -> str: # noqa D102
return FastModelHash.hash(model_path)
# the following two methods are callbacks to the ModelSearch object
def _scan_register(self, model: Path) -> bool:
try:
id = self.register(model)
self._logger.info(f"Registered {model} with id {id}")
self._installed.add(id)
except DuplicateModelException:
pass
return True
def _scan_install(self, model: Path) -> bool:
try:
id = self.install(model)
self._logger.info(f"Installed {model} with id {id}")
self._installed.add(id)
except DuplicateModelException:
pass
return True