mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
50bef87da7
Metadata for the Linear UI is now sneakily provided via a `MetadataAccumulator` node, which the client populates / hooks up while building the graph. Additionally, we provide the unexpanded graph with the metadata API response. Both of these are embedded into the PNGs. - Remove `metadata` from `ImageDTO` - Split up the `images/` routes to accomodate this; metadata is only retrieved per-image - `images/{image_name}` now gets the DTO - `images/{image_name}/metadata` gets the new metadata - `images/{image_name}/full` gets the full-sized image file - Remove old metadata service - Add `MetadataAccumulator` node, `CoreMetadataField`, hook up to `LatentsToImage` node - Add `get_raw()` method to `ItemStorage`, retrieves the row from DB as a string, no pydantic parsing - Update `images`related services to handle storing and retrieving the new metadata - Add `get_metadata_graph_from_raw_session` which extracts the `graph` from `session` without needing to hydrate the session in pydantic, in preparation for providing it as metadata; also removes all references to the `MetadataAccumulator` node |
||
---|---|---|
.. | ||
__init__.py | ||
baseinvocation.py | ||
collections.py | ||
compel.py | ||
controlnet_image_processors.py | ||
cv.py | ||
generate.py | ||
image.py | ||
infill.py | ||
latent.py | ||
math.py | ||
metadata.py | ||
model.py | ||
noise.py | ||
param_easing.py | ||
params.py | ||
prompt.py | ||
reconstruct.py | ||
upscale.py |