mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
14bf87e5e7
This class is deprecated and no longer needed. Set its workflow attr value to None (meaning it is now a no-op), and issue a warning when an invocation subclasses it.
942 lines
37 KiB
Python
942 lines
37 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI team
|
|
|
|
from __future__ import annotations
|
|
|
|
import inspect
|
|
import re
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from inspect import signature
|
|
from types import UnionType
|
|
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Iterable, Literal, Optional, Type, TypeVar, Union, cast
|
|
|
|
import semver
|
|
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, create_model
|
|
from pydantic.fields import FieldInfo, _Unset
|
|
from pydantic_core import PydanticUndefined
|
|
|
|
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
|
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
|
|
from invokeai.app.shared.fields import FieldDescriptions
|
|
from invokeai.app.util.metaenum import MetaEnum
|
|
from invokeai.app.util.misc import uuid_string
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
if TYPE_CHECKING:
|
|
from ..services.invocation_services import InvocationServices
|
|
|
|
logger = InvokeAILogger.get_logger()
|
|
|
|
CUSTOM_NODE_PACK_SUFFIX = "__invokeai-custom-node"
|
|
|
|
|
|
class InvalidVersionError(ValueError):
|
|
pass
|
|
|
|
|
|
class InvalidFieldError(TypeError):
|
|
pass
|
|
|
|
|
|
class Input(str, Enum, metaclass=MetaEnum):
|
|
"""
|
|
The type of input a field accepts.
|
|
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
|
|
are instantiated.
|
|
- `Input.Connection`: The field must have its value provided by a connection.
|
|
- `Input.Any`: The field may have its value provided either directly or by a connection.
|
|
"""
|
|
|
|
Connection = "connection"
|
|
Direct = "direct"
|
|
Any = "any"
|
|
|
|
|
|
class FieldKind(str, Enum, metaclass=MetaEnum):
|
|
"""
|
|
The kind of field.
|
|
- `Input`: An input field on a node.
|
|
- `Output`: An output field on a node.
|
|
- `Internal`: A field which is treated as an input, but cannot be used in node definitions. Metadata is
|
|
one example. It is provided to nodes via the WithMetadata class, and we want to reserve the field name
|
|
"metadata" for this on all nodes. `FieldKind` is used to short-circuit the field name validation logic,
|
|
allowing "metadata" for that field.
|
|
- `NodeAttribute`: The field is a node attribute. These are fields which are not inputs or outputs,
|
|
but which are used to store information about the node. For example, the `id` and `type` fields are node
|
|
attributes.
|
|
|
|
The presence of this in `json_schema_extra["field_kind"]` is used when initializing node schemas on app
|
|
startup, and when generating the OpenAPI schema for the workflow editor.
|
|
"""
|
|
|
|
Input = "input"
|
|
Output = "output"
|
|
Internal = "internal"
|
|
NodeAttribute = "node_attribute"
|
|
|
|
|
|
class UIType(str, Enum, metaclass=MetaEnum):
|
|
"""
|
|
Type hints for the UI for situations in which the field type is not enough to infer the correct UI type.
|
|
|
|
- Model Fields
|
|
The most common node-author-facing use will be for model fields. Internally, there is no difference
|
|
between SD-1, SD-2 and SDXL model fields - they all use the class `MainModelField`. To ensure the
|
|
base-model-specific UI is rendered, use e.g. `ui_type=UIType.SDXLMainModelField` to indicate that
|
|
the field is an SDXL main model field.
|
|
|
|
- Any Field
|
|
We cannot infer the usage of `typing.Any` via schema parsing, so you *must* use `ui_type=UIType.Any` to
|
|
indicate that the field accepts any type. Use with caution. This cannot be used on outputs.
|
|
|
|
- Scheduler Field
|
|
Special handling in the UI is needed for this field, which otherwise would be parsed as a plain enum field.
|
|
|
|
- Internal Fields
|
|
Similar to the Any Field, the `collect` and `iterate` nodes make use of `typing.Any`. To facilitate
|
|
handling these types in the client, we use `UIType._Collection` and `UIType._CollectionItem`. These
|
|
should not be used by node authors.
|
|
|
|
- DEPRECATED Fields
|
|
These types are deprecated and should not be used by node authors. A warning will be logged if one is
|
|
used, and the type will be ignored. They are included here for backwards compatibility.
|
|
"""
|
|
|
|
# region Model Field Types
|
|
SDXLMainModel = "SDXLMainModelField"
|
|
SDXLRefinerModel = "SDXLRefinerModelField"
|
|
ONNXModel = "ONNXModelField"
|
|
VaeModel = "VAEModelField"
|
|
LoRAModel = "LoRAModelField"
|
|
ControlNetModel = "ControlNetModelField"
|
|
IPAdapterModel = "IPAdapterModelField"
|
|
# endregion
|
|
|
|
# region Misc Field Types
|
|
Scheduler = "SchedulerField"
|
|
Any = "AnyField"
|
|
# endregion
|
|
|
|
# region Internal Field Types
|
|
_Collection = "CollectionField"
|
|
_CollectionItem = "CollectionItemField"
|
|
# endregion
|
|
|
|
# region DEPRECATED
|
|
Boolean = "DEPRECATED_Boolean"
|
|
Color = "DEPRECATED_Color"
|
|
Conditioning = "DEPRECATED_Conditioning"
|
|
Control = "DEPRECATED_Control"
|
|
Float = "DEPRECATED_Float"
|
|
Image = "DEPRECATED_Image"
|
|
Integer = "DEPRECATED_Integer"
|
|
Latents = "DEPRECATED_Latents"
|
|
String = "DEPRECATED_String"
|
|
BooleanCollection = "DEPRECATED_BooleanCollection"
|
|
ColorCollection = "DEPRECATED_ColorCollection"
|
|
ConditioningCollection = "DEPRECATED_ConditioningCollection"
|
|
ControlCollection = "DEPRECATED_ControlCollection"
|
|
FloatCollection = "DEPRECATED_FloatCollection"
|
|
ImageCollection = "DEPRECATED_ImageCollection"
|
|
IntegerCollection = "DEPRECATED_IntegerCollection"
|
|
LatentsCollection = "DEPRECATED_LatentsCollection"
|
|
StringCollection = "DEPRECATED_StringCollection"
|
|
BooleanPolymorphic = "DEPRECATED_BooleanPolymorphic"
|
|
ColorPolymorphic = "DEPRECATED_ColorPolymorphic"
|
|
ConditioningPolymorphic = "DEPRECATED_ConditioningPolymorphic"
|
|
ControlPolymorphic = "DEPRECATED_ControlPolymorphic"
|
|
FloatPolymorphic = "DEPRECATED_FloatPolymorphic"
|
|
ImagePolymorphic = "DEPRECATED_ImagePolymorphic"
|
|
IntegerPolymorphic = "DEPRECATED_IntegerPolymorphic"
|
|
LatentsPolymorphic = "DEPRECATED_LatentsPolymorphic"
|
|
StringPolymorphic = "DEPRECATED_StringPolymorphic"
|
|
MainModel = "DEPRECATED_MainModel"
|
|
UNet = "DEPRECATED_UNet"
|
|
Vae = "DEPRECATED_Vae"
|
|
CLIP = "DEPRECATED_CLIP"
|
|
Collection = "DEPRECATED_Collection"
|
|
CollectionItem = "DEPRECATED_CollectionItem"
|
|
Enum = "DEPRECATED_Enum"
|
|
WorkflowField = "DEPRECATED_WorkflowField"
|
|
IsIntermediate = "DEPRECATED_IsIntermediate"
|
|
BoardField = "DEPRECATED_BoardField"
|
|
MetadataItem = "DEPRECATED_MetadataItem"
|
|
MetadataItemCollection = "DEPRECATED_MetadataItemCollection"
|
|
MetadataItemPolymorphic = "DEPRECATED_MetadataItemPolymorphic"
|
|
MetadataDict = "DEPRECATED_MetadataDict"
|
|
# endregion
|
|
|
|
|
|
class UIComponent(str, Enum, metaclass=MetaEnum):
|
|
"""
|
|
The type of UI component to use for a field, used to override the default components, which are
|
|
inferred from the field type.
|
|
"""
|
|
|
|
None_ = "none"
|
|
Textarea = "textarea"
|
|
Slider = "slider"
|
|
|
|
|
|
class InputFieldJSONSchemaExtra(BaseModel):
|
|
"""
|
|
Extra attributes to be added to input fields and their OpenAPI schema. Used during graph execution,
|
|
and by the workflow editor during schema parsing and UI rendering.
|
|
"""
|
|
|
|
input: Input
|
|
orig_required: bool
|
|
field_kind: FieldKind
|
|
default: Optional[Any] = None
|
|
orig_default: Optional[Any] = None
|
|
ui_hidden: bool = False
|
|
ui_type: Optional[UIType] = None
|
|
ui_component: Optional[UIComponent] = None
|
|
ui_order: Optional[int] = None
|
|
ui_choice_labels: Optional[dict[str, str]] = None
|
|
|
|
model_config = ConfigDict(
|
|
validate_assignment=True,
|
|
json_schema_serialization_defaults_required=True,
|
|
)
|
|
|
|
|
|
class OutputFieldJSONSchemaExtra(BaseModel):
|
|
"""
|
|
Extra attributes to be added to input fields and their OpenAPI schema. Used by the workflow editor
|
|
during schema parsing and UI rendering.
|
|
"""
|
|
|
|
field_kind: FieldKind
|
|
ui_hidden: bool
|
|
ui_type: Optional[UIType]
|
|
ui_order: Optional[int]
|
|
|
|
model_config = ConfigDict(
|
|
validate_assignment=True,
|
|
json_schema_serialization_defaults_required=True,
|
|
)
|
|
|
|
|
|
def InputField(
|
|
# copied from pydantic's Field
|
|
# TODO: Can we support default_factory?
|
|
default: Any = _Unset,
|
|
default_factory: Callable[[], Any] | None = _Unset,
|
|
title: str | None = _Unset,
|
|
description: str | None = _Unset,
|
|
pattern: str | None = _Unset,
|
|
strict: bool | None = _Unset,
|
|
gt: float | None = _Unset,
|
|
ge: float | None = _Unset,
|
|
lt: float | None = _Unset,
|
|
le: float | None = _Unset,
|
|
multiple_of: float | None = _Unset,
|
|
allow_inf_nan: bool | None = _Unset,
|
|
max_digits: int | None = _Unset,
|
|
decimal_places: int | None = _Unset,
|
|
min_length: int | None = _Unset,
|
|
max_length: int | None = _Unset,
|
|
# custom
|
|
input: Input = Input.Any,
|
|
ui_type: Optional[UIType] = None,
|
|
ui_component: Optional[UIComponent] = None,
|
|
ui_hidden: bool = False,
|
|
ui_order: Optional[int] = None,
|
|
ui_choice_labels: Optional[dict[str, str]] = None,
|
|
) -> Any:
|
|
"""
|
|
Creates an input field for an invocation.
|
|
|
|
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field) \
|
|
that adds a few extra parameters to support graph execution and the node editor UI.
|
|
|
|
:param Input input: [Input.Any] The kind of input this field requires. \
|
|
`Input.Direct` means a value must be provided on instantiation. \
|
|
`Input.Connection` means the value must be provided by a connection. \
|
|
`Input.Any` means either will do.
|
|
|
|
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
|
|
In some situations, the field's type is not enough to infer the correct UI type. \
|
|
For example, model selection fields should render a dropdown UI component to select a model. \
|
|
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
|
|
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
|
|
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
|
|
|
|
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
|
|
The UI will always render a suitable component, but sometimes you want something different than the default. \
|
|
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
|
|
For this case, you could provide `UIComponent.Textarea`.
|
|
|
|
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
|
|
|
|
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI.
|
|
|
|
:param dict[str, str] ui_choice_labels: [None] Specifies the labels to use for the choices in an enum field.
|
|
"""
|
|
|
|
json_schema_extra_ = InputFieldJSONSchemaExtra(
|
|
input=input,
|
|
ui_type=ui_type,
|
|
ui_component=ui_component,
|
|
ui_hidden=ui_hidden,
|
|
ui_order=ui_order,
|
|
ui_choice_labels=ui_choice_labels,
|
|
field_kind=FieldKind.Input,
|
|
orig_required=True,
|
|
)
|
|
|
|
"""
|
|
There is a conflict between the typing of invocation definitions and the typing of an invocation's
|
|
`invoke()` function.
|
|
|
|
On instantiation of a node, the invocation definition is used to create the python class. At this time,
|
|
any number of fields may be optional, because they may be provided by connections.
|
|
|
|
On calling of `invoke()`, however, those fields may be required.
|
|
|
|
For example, consider an ResizeImageInvocation with an `image: ImageField` field.
|
|
|
|
`image` is required during the call to `invoke()`, but when the python class is instantiated,
|
|
the field may not be present. This is fine, because that image field will be provided by a
|
|
connection from an ancestor node, which outputs an image.
|
|
|
|
This means we want to type the `image` field as optional for the node class definition, but required
|
|
for the `invoke()` function.
|
|
|
|
If we use `typing.Optional` in the node class definition, the field will be typed as optional in the
|
|
`invoke()` method, and we'll have to do a lot of runtime checks to ensure the field is present - or
|
|
any static type analysis tools will complain.
|
|
|
|
To get around this, in node class definitions, we type all fields correctly for the `invoke()` function,
|
|
but secretly make them optional in `InputField()`. We also store the original required bool and/or default
|
|
value. When we call `invoke()`, we use this stored information to do an additional check on the class.
|
|
"""
|
|
|
|
if default_factory is not _Unset and default_factory is not None:
|
|
default = default_factory()
|
|
logger.warn('"default_factory" is not supported, calling it now to set "default"')
|
|
|
|
# These are the args we may wish pass to the pydantic `Field()` function
|
|
field_args = {
|
|
"default": default,
|
|
"title": title,
|
|
"description": description,
|
|
"pattern": pattern,
|
|
"strict": strict,
|
|
"gt": gt,
|
|
"ge": ge,
|
|
"lt": lt,
|
|
"le": le,
|
|
"multiple_of": multiple_of,
|
|
"allow_inf_nan": allow_inf_nan,
|
|
"max_digits": max_digits,
|
|
"decimal_places": decimal_places,
|
|
"min_length": min_length,
|
|
"max_length": max_length,
|
|
}
|
|
|
|
# We only want to pass the args that were provided, otherwise the `Field()`` function won't work as expected
|
|
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
|
|
|
|
# Because we are manually making fields optional, we need to store the original required bool for reference later
|
|
json_schema_extra_.orig_required = default is PydanticUndefined
|
|
|
|
# Make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
|
|
if input is Input.Any or input is Input.Connection:
|
|
default_ = None if default is PydanticUndefined else default
|
|
provided_args.update({"default": default_})
|
|
if default is not PydanticUndefined:
|
|
# Before invoking, we'll check for the original default value and set it on the field if the field has no value
|
|
json_schema_extra_.default = default
|
|
json_schema_extra_.orig_default = default
|
|
elif default is not PydanticUndefined:
|
|
default_ = default
|
|
provided_args.update({"default": default_})
|
|
json_schema_extra_.orig_default = default_
|
|
|
|
return Field(
|
|
**provided_args,
|
|
json_schema_extra=json_schema_extra_.model_dump(exclude_none=True),
|
|
)
|
|
|
|
|
|
def OutputField(
|
|
# copied from pydantic's Field
|
|
default: Any = _Unset,
|
|
title: str | None = _Unset,
|
|
description: str | None = _Unset,
|
|
pattern: str | None = _Unset,
|
|
strict: bool | None = _Unset,
|
|
gt: float | None = _Unset,
|
|
ge: float | None = _Unset,
|
|
lt: float | None = _Unset,
|
|
le: float | None = _Unset,
|
|
multiple_of: float | None = _Unset,
|
|
allow_inf_nan: bool | None = _Unset,
|
|
max_digits: int | None = _Unset,
|
|
decimal_places: int | None = _Unset,
|
|
min_length: int | None = _Unset,
|
|
max_length: int | None = _Unset,
|
|
# custom
|
|
ui_type: Optional[UIType] = None,
|
|
ui_hidden: bool = False,
|
|
ui_order: Optional[int] = None,
|
|
) -> Any:
|
|
"""
|
|
Creates an output field for an invocation output.
|
|
|
|
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
|
|
that adds a few extra parameters to support graph execution and the node editor UI.
|
|
|
|
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
|
|
In some situations, the field's type is not enough to infer the correct UI type. \
|
|
For example, model selection fields should render a dropdown UI component to select a model. \
|
|
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
|
|
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
|
|
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
|
|
|
|
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
|
|
|
|
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
|
|
"""
|
|
return Field(
|
|
default=default,
|
|
title=title,
|
|
description=description,
|
|
pattern=pattern,
|
|
strict=strict,
|
|
gt=gt,
|
|
ge=ge,
|
|
lt=lt,
|
|
le=le,
|
|
multiple_of=multiple_of,
|
|
allow_inf_nan=allow_inf_nan,
|
|
max_digits=max_digits,
|
|
decimal_places=decimal_places,
|
|
min_length=min_length,
|
|
max_length=max_length,
|
|
json_schema_extra=OutputFieldJSONSchemaExtra(
|
|
ui_type=ui_type,
|
|
ui_hidden=ui_hidden,
|
|
ui_order=ui_order,
|
|
field_kind=FieldKind.Output,
|
|
).model_dump(exclude_none=True),
|
|
)
|
|
|
|
|
|
class UIConfigBase(BaseModel):
|
|
"""
|
|
Provides additional node configuration to the UI.
|
|
This is used internally by the @invocation decorator logic. Do not use this directly.
|
|
"""
|
|
|
|
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
|
|
title: Optional[str] = Field(default=None, description="The node's display name")
|
|
category: Optional[str] = Field(default=None, description="The node's category")
|
|
version: str = Field(
|
|
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
|
|
)
|
|
node_pack: Optional[str] = Field(default=None, description="Whether or not this is a custom node")
|
|
|
|
model_config = ConfigDict(
|
|
validate_assignment=True,
|
|
json_schema_serialization_defaults_required=True,
|
|
)
|
|
|
|
|
|
class InvocationContext:
|
|
"""Initialized and provided to on execution of invocations."""
|
|
|
|
services: InvocationServices
|
|
graph_execution_state_id: str
|
|
queue_id: str
|
|
queue_item_id: int
|
|
queue_batch_id: str
|
|
workflow: Optional[WorkflowWithoutID]
|
|
|
|
def __init__(
|
|
self,
|
|
services: InvocationServices,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
workflow: Optional[WorkflowWithoutID],
|
|
):
|
|
self.services = services
|
|
self.graph_execution_state_id = graph_execution_state_id
|
|
self.queue_id = queue_id
|
|
self.queue_item_id = queue_item_id
|
|
self.queue_batch_id = queue_batch_id
|
|
self.workflow = workflow
|
|
|
|
|
|
class BaseInvocationOutput(BaseModel):
|
|
"""
|
|
Base class for all invocation outputs.
|
|
|
|
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
|
|
"""
|
|
|
|
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
|
|
|
|
@classmethod
|
|
def register_output(cls, output: BaseInvocationOutput) -> None:
|
|
"""Registers an invocation output."""
|
|
cls._output_classes.add(output)
|
|
|
|
@classmethod
|
|
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
|
|
"""Gets all invocation outputs."""
|
|
return cls._output_classes
|
|
|
|
@classmethod
|
|
def get_outputs_union(cls) -> UnionType:
|
|
"""Gets a union of all invocation outputs."""
|
|
outputs_union = Union[tuple(cls._output_classes)] # type: ignore [valid-type]
|
|
return outputs_union # type: ignore [return-value]
|
|
|
|
@classmethod
|
|
def get_output_types(cls) -> Iterable[str]:
|
|
"""Gets all invocation output types."""
|
|
return (i.get_type() for i in BaseInvocationOutput.get_outputs())
|
|
|
|
@staticmethod
|
|
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
|
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
|
|
# Because we use a pydantic Literal field with default value for the invocation type,
|
|
# it will be typed as optional in the OpenAPI schema. Make it required manually.
|
|
if "required" not in schema or not isinstance(schema["required"], list):
|
|
schema["required"] = []
|
|
schema["required"].extend(["type"])
|
|
|
|
@classmethod
|
|
def get_type(cls) -> str:
|
|
"""Gets the invocation output's type, as provided by the `@invocation_output` decorator."""
|
|
return cls.model_fields["type"].default
|
|
|
|
model_config = ConfigDict(
|
|
protected_namespaces=(),
|
|
validate_assignment=True,
|
|
json_schema_serialization_defaults_required=True,
|
|
json_schema_extra=json_schema_extra,
|
|
)
|
|
|
|
|
|
class RequiredConnectionException(Exception):
|
|
"""Raised when an field which requires a connection did not receive a value."""
|
|
|
|
def __init__(self, node_id: str, field_name: str):
|
|
super().__init__(f"Node {node_id} missing connections for field {field_name}")
|
|
|
|
|
|
class MissingInputException(Exception):
|
|
"""Raised when an field which requires some input, but did not receive a value."""
|
|
|
|
def __init__(self, node_id: str, field_name: str):
|
|
super().__init__(f"Node {node_id} missing value or connection for field {field_name}")
|
|
|
|
|
|
class BaseInvocation(ABC, BaseModel):
|
|
"""
|
|
All invocations must use the `@invocation` decorator to provide their unique type.
|
|
"""
|
|
|
|
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
|
|
|
|
@classmethod
|
|
def get_type(cls) -> str:
|
|
"""Gets the invocation's type, as provided by the `@invocation` decorator."""
|
|
return cls.model_fields["type"].default
|
|
|
|
@classmethod
|
|
def register_invocation(cls, invocation: BaseInvocation) -> None:
|
|
"""Registers an invocation."""
|
|
cls._invocation_classes.add(invocation)
|
|
|
|
@classmethod
|
|
def get_invocations_union(cls) -> UnionType:
|
|
"""Gets a union of all invocation types."""
|
|
invocations_union = Union[tuple(cls._invocation_classes)] # type: ignore [valid-type]
|
|
return invocations_union # type: ignore [return-value]
|
|
|
|
@classmethod
|
|
def get_invocations(cls) -> Iterable[BaseInvocation]:
|
|
"""Gets all invocations, respecting the allowlist and denylist."""
|
|
app_config = InvokeAIAppConfig.get_config()
|
|
allowed_invocations: set[BaseInvocation] = set()
|
|
for sc in cls._invocation_classes:
|
|
invocation_type = sc.get_type()
|
|
is_in_allowlist = (
|
|
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
|
|
)
|
|
is_in_denylist = (
|
|
invocation_type in app_config.deny_nodes if isinstance(app_config.deny_nodes, list) else False
|
|
)
|
|
if is_in_allowlist and not is_in_denylist:
|
|
allowed_invocations.add(sc)
|
|
return allowed_invocations
|
|
|
|
@classmethod
|
|
def get_invocations_map(cls) -> dict[str, BaseInvocation]:
|
|
"""Gets a map of all invocation types to their invocation classes."""
|
|
return {i.get_type(): i for i in BaseInvocation.get_invocations()}
|
|
|
|
@classmethod
|
|
def get_invocation_types(cls) -> Iterable[str]:
|
|
"""Gets all invocation types."""
|
|
return (i.get_type() for i in BaseInvocation.get_invocations())
|
|
|
|
@classmethod
|
|
def get_output_annotation(cls) -> BaseInvocationOutput:
|
|
"""Gets the invocation's output annotation (i.e. the return annotation of its `invoke()` method)."""
|
|
return signature(cls.invoke).return_annotation
|
|
|
|
@staticmethod
|
|
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel], *args, **kwargs) -> None:
|
|
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
|
|
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
|
|
if uiconfig is not None:
|
|
if uiconfig.title is not None:
|
|
schema["title"] = uiconfig.title
|
|
if uiconfig.tags is not None:
|
|
schema["tags"] = uiconfig.tags
|
|
if uiconfig.category is not None:
|
|
schema["category"] = uiconfig.category
|
|
if uiconfig.node_pack is not None:
|
|
schema["node_pack"] = uiconfig.node_pack
|
|
schema["version"] = uiconfig.version
|
|
if "required" not in schema or not isinstance(schema["required"], list):
|
|
schema["required"] = []
|
|
schema["required"].extend(["type", "id"])
|
|
|
|
@abstractmethod
|
|
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
|
|
"""Invoke with provided context and return outputs."""
|
|
pass
|
|
|
|
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
|
|
"""
|
|
Internal invoke method, calls `invoke()` after some prep.
|
|
Handles optional fields that are required to call `invoke()` and invocation cache.
|
|
"""
|
|
for field_name, field in self.model_fields.items():
|
|
if not field.json_schema_extra or callable(field.json_schema_extra):
|
|
# something has gone terribly awry, we should always have this and it should be a dict
|
|
continue
|
|
|
|
# Here we handle the case where the field is optional in the pydantic class, but required
|
|
# in the `invoke()` method.
|
|
|
|
orig_default = field.json_schema_extra.get("orig_default", PydanticUndefined)
|
|
orig_required = field.json_schema_extra.get("orig_required", True)
|
|
input_ = field.json_schema_extra.get("input", None)
|
|
if orig_default is not PydanticUndefined and not hasattr(self, field_name):
|
|
setattr(self, field_name, orig_default)
|
|
if orig_required and orig_default is PydanticUndefined and getattr(self, field_name) is None:
|
|
if input_ == Input.Connection:
|
|
raise RequiredConnectionException(self.model_fields["type"].default, field_name)
|
|
elif input_ == Input.Any:
|
|
raise MissingInputException(self.model_fields["type"].default, field_name)
|
|
|
|
# skip node cache codepath if it's disabled
|
|
if context.services.configuration.node_cache_size == 0:
|
|
return self.invoke(context)
|
|
|
|
output: BaseInvocationOutput
|
|
if self.use_cache:
|
|
key = context.services.invocation_cache.create_key(self)
|
|
cached_value = context.services.invocation_cache.get(key)
|
|
if cached_value is None:
|
|
context.services.logger.debug(f'Invocation cache miss for type "{self.get_type()}": {self.id}')
|
|
output = self.invoke(context)
|
|
context.services.invocation_cache.save(key, output)
|
|
return output
|
|
else:
|
|
context.services.logger.debug(f'Invocation cache hit for type "{self.get_type()}": {self.id}')
|
|
return cached_value
|
|
else:
|
|
context.services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
|
|
return self.invoke(context)
|
|
|
|
id: str = Field(
|
|
default_factory=uuid_string,
|
|
description="The id of this instance of an invocation. Must be unique among all instances of invocations.",
|
|
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
|
|
)
|
|
is_intermediate: bool = Field(
|
|
default=False,
|
|
description="Whether or not this is an intermediate invocation.",
|
|
json_schema_extra={"ui_type": "IsIntermediate", "field_kind": FieldKind.NodeAttribute},
|
|
)
|
|
use_cache: bool = Field(
|
|
default=True,
|
|
description="Whether or not to use the cache",
|
|
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
|
|
)
|
|
|
|
UIConfig: ClassVar[Type[UIConfigBase]]
|
|
|
|
model_config = ConfigDict(
|
|
protected_namespaces=(),
|
|
validate_assignment=True,
|
|
json_schema_extra=json_schema_extra,
|
|
json_schema_serialization_defaults_required=True,
|
|
coerce_numbers_to_str=True,
|
|
)
|
|
|
|
|
|
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
|
|
|
|
|
|
RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
|
|
"id",
|
|
"is_intermediate",
|
|
"use_cache",
|
|
"type",
|
|
"workflow",
|
|
}
|
|
|
|
RESERVED_INPUT_FIELD_NAMES = {
|
|
"metadata",
|
|
}
|
|
|
|
RESERVED_OUTPUT_FIELD_NAMES = {"type"}
|
|
|
|
|
|
class _Model(BaseModel):
|
|
pass
|
|
|
|
|
|
# Get all pydantic model attrs, methods, etc
|
|
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
|
|
|
|
|
|
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
|
|
"""
|
|
Validates the fields of an invocation or invocation output:
|
|
- Must not override any pydantic reserved fields
|
|
- Must have a type annotation
|
|
- Must have a json_schema_extra dict
|
|
- Must have field_kind in json_schema_extra
|
|
- Field name must not be reserved, according to its field_kind
|
|
"""
|
|
for name, field in model_fields.items():
|
|
if name in RESERVED_PYDANTIC_FIELD_NAMES:
|
|
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved by pydantic)')
|
|
|
|
if not field.annotation:
|
|
raise InvalidFieldError(f'Invalid field type "{name}" on "{model_type}" (missing annotation)')
|
|
|
|
if not isinstance(field.json_schema_extra, dict):
|
|
raise InvalidFieldError(
|
|
f'Invalid field definition for "{name}" on "{model_type}" (missing json_schema_extra dict)'
|
|
)
|
|
|
|
field_kind = field.json_schema_extra.get("field_kind", None)
|
|
|
|
# must have a field_kind
|
|
if not isinstance(field_kind, FieldKind):
|
|
raise InvalidFieldError(
|
|
f'Invalid field definition for "{name}" on "{model_type}" (maybe it\'s not an InputField or OutputField?)'
|
|
)
|
|
|
|
if field_kind is FieldKind.Input and (
|
|
name in RESERVED_NODE_ATTRIBUTE_FIELD_NAMES or name in RESERVED_INPUT_FIELD_NAMES
|
|
):
|
|
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved input field name)')
|
|
|
|
if field_kind is FieldKind.Output and name in RESERVED_OUTPUT_FIELD_NAMES:
|
|
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved output field name)')
|
|
|
|
if (field_kind is FieldKind.Internal) and name not in RESERVED_INPUT_FIELD_NAMES:
|
|
raise InvalidFieldError(
|
|
f'Invalid field name "{name}" on "{model_type}" (internal field without reserved name)'
|
|
)
|
|
|
|
# node attribute fields *must* be in the reserved list
|
|
if (
|
|
field_kind is FieldKind.NodeAttribute
|
|
and name not in RESERVED_NODE_ATTRIBUTE_FIELD_NAMES
|
|
and name not in RESERVED_OUTPUT_FIELD_NAMES
|
|
):
|
|
raise InvalidFieldError(
|
|
f'Invalid field name "{name}" on "{model_type}" (node attribute field without reserved name)'
|
|
)
|
|
|
|
ui_type = field.json_schema_extra.get("ui_type", None)
|
|
if isinstance(ui_type, str) and ui_type.startswith("DEPRECATED_"):
|
|
logger.warn(f"\"UIType.{ui_type.split('_')[-1]}\" is deprecated, ignoring")
|
|
field.json_schema_extra.pop("ui_type")
|
|
return None
|
|
|
|
|
|
def invocation(
|
|
invocation_type: str,
|
|
title: Optional[str] = None,
|
|
tags: Optional[list[str]] = None,
|
|
category: Optional[str] = None,
|
|
version: Optional[str] = None,
|
|
use_cache: Optional[bool] = True,
|
|
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
|
|
"""
|
|
Registers an invocation.
|
|
|
|
:param str invocation_type: The type of the invocation. Must be unique among all invocations.
|
|
:param Optional[str] title: Adds a title to the invocation. Use if the auto-generated title isn't quite right. Defaults to None.
|
|
:param Optional[list[str]] tags: Adds tags to the invocation. Invocations may be searched for by their tags. Defaults to None.
|
|
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
|
|
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
|
|
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
|
|
"""
|
|
|
|
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
|
|
# Validate invocation types on creation of invocation classes
|
|
# TODO: ensure unique?
|
|
if re.compile(r"^\S+$").match(invocation_type) is None:
|
|
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
|
|
|
|
if invocation_type in BaseInvocation.get_invocation_types():
|
|
raise ValueError(f'Invocation type "{invocation_type}" already exists')
|
|
|
|
validate_fields(cls.model_fields, invocation_type)
|
|
|
|
# Add OpenAPI schema extras
|
|
uiconfig_name = cls.__qualname__ + ".UIConfig"
|
|
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconfig_name:
|
|
cls.UIConfig = type(uiconfig_name, (UIConfigBase,), {})
|
|
cls.UIConfig.title = title
|
|
cls.UIConfig.tags = tags
|
|
cls.UIConfig.category = category
|
|
|
|
# Grab the node pack's name from the module name, if it's a custom node
|
|
is_custom_node = cls.__module__.rsplit(".", 1)[0] == "invokeai.app.invocations"
|
|
if is_custom_node:
|
|
cls.UIConfig.node_pack = cls.__module__.split(".")[0]
|
|
else:
|
|
cls.UIConfig.node_pack = None
|
|
|
|
if version is not None:
|
|
try:
|
|
semver.Version.parse(version)
|
|
except ValueError as e:
|
|
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
|
|
cls.UIConfig.version = version
|
|
else:
|
|
logger.warn(f'No version specified for node "{invocation_type}", using "1.0.0"')
|
|
cls.UIConfig.version = "1.0.0"
|
|
|
|
if use_cache is not None:
|
|
cls.model_fields["use_cache"].default = use_cache
|
|
|
|
# Add the invocation type to the model.
|
|
|
|
# You'd be tempted to just add the type field and rebuild the model, like this:
|
|
# cls.model_fields.update(type=FieldInfo.from_annotated_attribute(Literal[invocation_type], invocation_type))
|
|
# cls.model_rebuild() or cls.model_rebuild(force=True)
|
|
|
|
# Unfortunately, because the `GraphInvocation` uses a forward ref in its `graph` field's annotation, this does
|
|
# not work. Instead, we have to create a new class with the type field and patch the original class with it.
|
|
|
|
invocation_type_annotation = Literal[invocation_type] # type: ignore
|
|
invocation_type_field = Field(
|
|
title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
|
|
)
|
|
|
|
docstring = cls.__doc__
|
|
cls = create_model(
|
|
cls.__qualname__,
|
|
__base__=cls,
|
|
__module__=cls.__module__,
|
|
type=(invocation_type_annotation, invocation_type_field),
|
|
)
|
|
cls.__doc__ = docstring
|
|
|
|
# TODO: how to type this correctly? it's typed as ModelMetaclass, a private class in pydantic
|
|
BaseInvocation.register_invocation(cls) # type: ignore
|
|
|
|
return cls
|
|
|
|
return wrapper
|
|
|
|
|
|
TBaseInvocationOutput = TypeVar("TBaseInvocationOutput", bound=BaseInvocationOutput)
|
|
|
|
|
|
def invocation_output(
|
|
output_type: str,
|
|
) -> Callable[[Type[TBaseInvocationOutput]], Type[TBaseInvocationOutput]]:
|
|
"""
|
|
Adds metadata to an invocation output.
|
|
|
|
:param str output_type: The type of the invocation output. Must be unique among all invocation outputs.
|
|
"""
|
|
|
|
def wrapper(cls: Type[TBaseInvocationOutput]) -> Type[TBaseInvocationOutput]:
|
|
# Validate output types on creation of invocation output classes
|
|
# TODO: ensure unique?
|
|
if re.compile(r"^\S+$").match(output_type) is None:
|
|
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
|
|
|
|
if output_type in BaseInvocationOutput.get_output_types():
|
|
raise ValueError(f'Invocation type "{output_type}" already exists')
|
|
|
|
validate_fields(cls.model_fields, output_type)
|
|
|
|
# Add the output type to the model.
|
|
|
|
output_type_annotation = Literal[output_type] # type: ignore
|
|
output_type_field = Field(
|
|
title="type", default=output_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
|
|
)
|
|
|
|
docstring = cls.__doc__
|
|
cls = create_model(
|
|
cls.__qualname__,
|
|
__base__=cls,
|
|
__module__=cls.__module__,
|
|
type=(output_type_annotation, output_type_field),
|
|
)
|
|
cls.__doc__ = docstring
|
|
|
|
BaseInvocationOutput.register_output(cls) # type: ignore # TODO: how to type this correctly?
|
|
|
|
return cls
|
|
|
|
return wrapper
|
|
|
|
|
|
class MetadataField(RootModel):
|
|
"""
|
|
Pydantic model for metadata with custom root of type dict[str, Any].
|
|
Metadata is stored without a strict schema.
|
|
"""
|
|
|
|
root: dict[str, Any] = Field(description="The metadata")
|
|
|
|
|
|
MetadataFieldValidator = TypeAdapter(MetadataField)
|
|
|
|
|
|
class WithMetadata(BaseModel):
|
|
metadata: Optional[MetadataField] = Field(
|
|
default=None,
|
|
description=FieldDescriptions.metadata,
|
|
json_schema_extra=InputFieldJSONSchemaExtra(
|
|
field_kind=FieldKind.Internal,
|
|
input=Input.Connection,
|
|
orig_required=False,
|
|
).model_dump(exclude_none=True),
|
|
)
|
|
|
|
|
|
class WithWorkflow:
|
|
workflow = None
|
|
|
|
def __init_subclass__(cls) -> None:
|
|
logger.warn(
|
|
f"{cls.__module__.split('.')[0]}.{cls.__name__}: WithWorkflow is deprecated. Use `context.workflow` to access the workflow."
|
|
)
|
|
super().__init_subclass__()
|