mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
39b55ae016
This library is not required to use k-diffusion Make k-diffusion wrapper closer to the other samplers
70 lines
2.5 KiB
Python
70 lines
2.5 KiB
Python
'''wrapper around part of Karen Crownson's k-duffsion library, making it call compatible with other Samplers'''
|
|
import k_diffusion as K
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class CFGDenoiser(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.inner_model = model
|
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale):
|
|
x_in = torch.cat([x] * 2)
|
|
sigma_in = torch.cat([sigma] * 2)
|
|
cond_in = torch.cat([uncond, cond])
|
|
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
|
return uncond + (cond - uncond) * cond_scale
|
|
|
|
class KSampler(object):
|
|
def __init__(self, model, schedule="lms", device="cuda", **kwargs):
|
|
super().__init__()
|
|
self.model = K.external.CompVisDenoiser(model)
|
|
self.schedule = schedule
|
|
self.device = device
|
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale):
|
|
x_in = torch.cat([x] * 2)
|
|
sigma_in = torch.cat([sigma] * 2)
|
|
cond_in = torch.cat([uncond, cond])
|
|
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
|
return uncond + (cond - uncond) * cond_scale
|
|
|
|
|
|
# most of these arguments are ignored and are only present for compatibility with
|
|
# other samples
|
|
@torch.no_grad()
|
|
def sample(self,
|
|
S,
|
|
batch_size,
|
|
shape,
|
|
conditioning=None,
|
|
callback=None,
|
|
normals_sequence=None,
|
|
img_callback=None,
|
|
quantize_x0=False,
|
|
eta=0.,
|
|
mask=None,
|
|
x0=None,
|
|
temperature=1.,
|
|
noise_dropout=0.,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
verbose=True,
|
|
x_T=None,
|
|
log_every_t=100,
|
|
unconditional_guidance_scale=1.,
|
|
unconditional_conditioning=None,
|
|
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
|
**kwargs
|
|
):
|
|
|
|
sigmas = self.model.get_sigmas(S)
|
|
if x_T:
|
|
x = x_T
|
|
else:
|
|
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0] # for GPU draw
|
|
model_wrap_cfg = CFGDenoiser(self.model)
|
|
extra_args = {'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}
|
|
return (K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args=extra_args),
|
|
None)
|