InvokeAI/invokeai/backend/model_management/models/stable_diffusion.py
2023-08-18 15:52:04 +10:00

335 lines
12 KiB
Python

import os
import json
from enum import Enum
from pydantic import Field
from pathlib import Path
from typing import Literal, Optional, Union
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionPipeline
from .base import (
ModelConfigBase,
BaseModelType,
ModelType,
ModelVariantType,
DiffusersModel,
SilenceWarnings,
read_checkpoint_meta,
classproperty,
InvalidModelException,
ModelNotFoundException,
)
from .sdxl import StableDiffusionXLModel
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from omegaconf import OmegaConf
class StableDiffusion1ModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
class StableDiffusion1Model(DiffusersModel):
class DiffusersConfig(ModelConfigBase):
model_format: Literal[StableDiffusion1ModelFormat.Diffusers]
vae: Optional[str] = Field(None)
variant: ModelVariantType
class CheckpointConfig(ModelConfigBase):
model_format: Literal[StableDiffusion1ModelFormat.Checkpoint]
vae: Optional[str] = Field(None)
config: str
variant: ModelVariantType
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion1
assert model_type == ModelType.Main
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.Main,
)
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
ckpt_config_path = kwargs.get("config", None)
if model_format == StableDiffusion1ModelFormat.Checkpoint:
if ckpt_config_path:
ckpt_config = OmegaConf.load(ckpt_config_path)
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
else:
checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get("state_dict", checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
elif model_format == StableDiffusion1ModelFormat.Diffusers:
unet_config_path = os.path.join(path, "unet", "config.json")
if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read())
in_channels = unet_config["in_channels"]
else:
raise NotImplementedError(f"{path} is not a supported stable diffusion diffusers format")
else:
raise NotImplementedError(f"Unknown stable diffusion 1.* format: {model_format}")
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 1.* model format")
if ckpt_config_path is None:
ckpt_config_path = _select_ckpt_config(BaseModelType.StableDiffusion1, variant)
return cls.create_config(
path=path,
model_format=model_format,
config=ckpt_config_path,
variant=variant,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
if not os.path.exists(model_path):
raise ModelNotFoundException()
if os.path.isdir(model_path):
if os.path.exists(os.path.join(model_path, "model_index.json")):
return StableDiffusion1ModelFormat.Diffusers
if os.path.isfile(model_path):
if any([model_path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return StableDiffusion1ModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {model_path}")
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
if isinstance(config, cls.CheckpointConfig):
return _convert_ckpt_and_cache(
version=BaseModelType.StableDiffusion1,
model_config=config,
load_safety_checker=False,
output_path=output_path,
)
else:
return model_path
class StableDiffusion2ModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
class StableDiffusion2Model(DiffusersModel):
# TODO: check that configs overwriten properly
class DiffusersConfig(ModelConfigBase):
model_format: Literal[StableDiffusion2ModelFormat.Diffusers]
vae: Optional[str] = Field(None)
variant: ModelVariantType
class CheckpointConfig(ModelConfigBase):
model_format: Literal[StableDiffusion2ModelFormat.Checkpoint]
vae: Optional[str] = Field(None)
config: str
variant: ModelVariantType
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion2
assert model_type == ModelType.Main
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion2,
model_type=ModelType.Main,
)
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
ckpt_config_path = kwargs.get("config", None)
if model_format == StableDiffusion2ModelFormat.Checkpoint:
if ckpt_config_path:
ckpt_config = OmegaConf.load(ckpt_config_path)
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
else:
checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get("state_dict", checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
elif model_format == StableDiffusion2ModelFormat.Diffusers:
unet_config_path = os.path.join(path, "unet", "config.json")
if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read())
in_channels = unet_config["in_channels"]
else:
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
else:
raise NotImplementedError(f"Unknown stable diffusion 2.* format: {model_format}")
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 5:
variant = ModelVariantType.Depth
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 2.* model format")
if ckpt_config_path is None:
ckpt_config_path = _select_ckpt_config(BaseModelType.StableDiffusion2, variant)
return cls.create_config(
path=path,
model_format=model_format,
config=ckpt_config_path,
variant=variant,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
if not os.path.exists(model_path):
raise ModelNotFoundException()
if os.path.isdir(model_path):
if os.path.exists(os.path.join(model_path, "model_index.json")):
return StableDiffusion2ModelFormat.Diffusers
if os.path.isfile(model_path):
if any([model_path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return StableDiffusion2ModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {model_path}")
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
if isinstance(config, cls.CheckpointConfig):
return _convert_ckpt_and_cache(
version=BaseModelType.StableDiffusion2,
model_config=config,
output_path=output_path,
)
else:
return model_path
# TODO: rework
# pass precision - currently defaulting to fp16
def _convert_ckpt_and_cache(
version: BaseModelType,
model_config: Union[
StableDiffusion1Model.CheckpointConfig,
StableDiffusion2Model.CheckpointConfig,
StableDiffusionXLModel.CheckpointConfig,
],
output_path: str,
use_save_model: bool = False,
**kwargs,
) -> str:
"""
Convert the checkpoint model indicated in mconfig into a
diffusers, cache it to disk, and return Path to converted
file. If already on disk then just returns Path.
"""
app_config = InvokeAIAppConfig.get_config()
weights = app_config.models_path / model_config.path
config_file = app_config.root_path / model_config.config
output_path = Path(output_path)
variant = model_config.variant
pipeline_class = StableDiffusionInpaintPipeline if variant == "inpaint" else StableDiffusionPipeline
# return cached version if it exists
if output_path.exists():
return output_path
# to avoid circular import errors
from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
from ...util.devices import choose_torch_device, torch_dtype
model_base_to_model_type = {
BaseModelType.StableDiffusion1: "FrozenCLIPEmbedder",
BaseModelType.StableDiffusion2: "FrozenOpenCLIPEmbedder",
BaseModelType.StableDiffusionXL: "SDXL",
BaseModelType.StableDiffusionXLRefiner: "SDXL-Refiner",
}
logger.info(f"Converting {weights} to diffusers format")
with SilenceWarnings():
convert_ckpt_to_diffusers(
weights,
output_path,
model_type=model_base_to_model_type[version],
model_version=version,
model_variant=model_config.variant,
original_config_file=config_file,
extract_ema=True,
scan_needed=True,
pipeline_class=pipeline_class,
from_safetensors=weights.suffix == ".safetensors",
precision=torch_dtype(choose_torch_device()),
**kwargs,
)
return output_path
def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
ckpt_configs = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512)
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
ModelVariantType.Depth: "v2-midas-inference.yaml",
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "sd_xl_base.yaml",
ModelVariantType.Inpaint: None,
ModelVariantType.Depth: None,
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: "sd_xl_refiner.yaml",
ModelVariantType.Inpaint: None,
ModelVariantType.Depth: None,
},
}
app_config = InvokeAIAppConfig.get_config()
try:
config_path = app_config.legacy_conf_path / ckpt_configs[version][variant]
if config_path.is_relative_to(app_config.root_path):
config_path = config_path.relative_to(app_config.root_path)
return str(config_path)
except Exception:
return None