mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
364 lines
15 KiB
Python
Executable File
364 lines
15 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
|
|
import argparse
|
|
import shlex
|
|
import os
|
|
import sys
|
|
import copy
|
|
import ldm.dream.readline
|
|
|
|
from ldm.dream.pngwriter import PngWriter,PromptFormatter
|
|
debugging = False
|
|
|
|
def main():
|
|
''' Initialize command-line parsers and the diffusion model '''
|
|
arg_parser = create_argv_parser()
|
|
opt = arg_parser.parse_args()
|
|
if opt.laion400m:
|
|
# defaults suitable to the older latent diffusion weights
|
|
width = 256
|
|
height = 256
|
|
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
|
|
weights = "models/ldm/text2img-large/model.ckpt"
|
|
else:
|
|
# some defaults suitable for stable diffusion weights
|
|
width = 512
|
|
height = 512
|
|
config = "configs/stable-diffusion/v1-inference.yaml"
|
|
weights = "models/ldm/stable-diffusion-v1/model.ckpt"
|
|
|
|
print("* Initializing, be patient...\n")
|
|
sys.path.append('.')
|
|
from pytorch_lightning import logging
|
|
from ldm.simplet2i import T2I
|
|
# these two lines prevent a horrible warning message from appearing
|
|
# when the frozen CLIP tokenizer is imported
|
|
import transformers
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
# creating a simple text2image object with a handful of
|
|
# defaults passed on the command line.
|
|
# additional parameters will be added (or overriden) during
|
|
# the user input loop
|
|
t2i = T2I(width=width,
|
|
height=height,
|
|
sampler_name=opt.sampler_name,
|
|
weights=weights,
|
|
full_precision=opt.full_precision,
|
|
config=config,
|
|
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
|
|
embedding_path=opt.embedding_path,
|
|
device=opt.device
|
|
)
|
|
|
|
# make sure the output directory exists
|
|
if not os.path.exists(opt.outdir):
|
|
os.makedirs(opt.outdir)
|
|
|
|
# gets rid of annoying messages about random seed
|
|
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
|
|
|
|
infile = None
|
|
try:
|
|
if opt.infile is not None:
|
|
infile = open(opt.infile,'r')
|
|
except FileNotFoundError as e:
|
|
print(e)
|
|
exit(-1)
|
|
|
|
# preload the model
|
|
t2i.load_model()
|
|
|
|
# load GFPGAN if requested
|
|
if opt.use_gfpgan:
|
|
print("\n* --gfpgan was specified, loading gfpgan...")
|
|
try:
|
|
model_path = os.path.join(opt.gfpgan_dir, opt.gfpgan_model_path)
|
|
if not os.path.isfile(model_path):
|
|
raise Exception("GFPGAN model not found at path "+model_path)
|
|
|
|
sys.path.append(os.path.abspath(opt.gfpgan_dir))
|
|
from gfpgan import GFPGANer
|
|
|
|
bg_upsampler = load_gfpgan_bg_upsampler(opt.gfpgan_bg_upsampler, opt.gfpgan_bg_tile)
|
|
|
|
t2i.gfpgan = GFPGANer(model_path=model_path, upscale=opt.gfpgan_upscale, arch='clean', channel_multiplier=2, bg_upsampler=bg_upsampler)
|
|
except Exception:
|
|
import traceback
|
|
print("Error loading GFPGAN:", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
print("\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)...")
|
|
|
|
log_path = os.path.join(opt.outdir,'dream_log.txt')
|
|
with open(log_path,'a') as log:
|
|
cmd_parser = create_cmd_parser()
|
|
main_loop(t2i,opt.outdir,cmd_parser,log,infile)
|
|
log.close()
|
|
if infile:
|
|
infile.close()
|
|
|
|
|
|
def main_loop(t2i,outdir,parser,log,infile):
|
|
''' prompt/read/execute loop '''
|
|
done = False
|
|
|
|
while not done:
|
|
try:
|
|
command = infile.readline() if infile else input("dream> ")
|
|
except EOFError:
|
|
done = True
|
|
break
|
|
|
|
if infile and len(command)==0:
|
|
done = True
|
|
break
|
|
|
|
if command.startswith(('#','//')):
|
|
continue
|
|
|
|
# before splitting, escape single quotes so as not to mess
|
|
# up the parser
|
|
command = command.replace("'","\\'")
|
|
|
|
try:
|
|
elements = shlex.split(command)
|
|
except ValueError as e:
|
|
print(str(e))
|
|
continue
|
|
|
|
if len(elements)==0:
|
|
continue
|
|
|
|
if elements[0]=='q':
|
|
done = True
|
|
break
|
|
|
|
if elements[0]=='cd' and len(elements)>1:
|
|
if os.path.exists(elements[1]):
|
|
print(f"setting image output directory to {elements[1]}")
|
|
outdir=elements[1]
|
|
else:
|
|
print(f"directory {elements[1]} does not exist")
|
|
continue
|
|
|
|
if elements[0]=='pwd':
|
|
print(f"current output directory is {outdir}")
|
|
continue
|
|
|
|
if elements[0].startswith('!dream'): # in case a stored prompt still contains the !dream command
|
|
elements.pop(0)
|
|
|
|
# rearrange the arguments to mimic how it works in the Dream bot.
|
|
switches = ['']
|
|
switches_started = False
|
|
|
|
for el in elements:
|
|
if el[0]=='-' and not switches_started:
|
|
switches_started = True
|
|
if switches_started:
|
|
switches.append(el)
|
|
else:
|
|
switches[0] += el
|
|
switches[0] += ' '
|
|
switches[0] = switches[0][:len(switches[0])-1]
|
|
|
|
try:
|
|
opt = parser.parse_args(switches)
|
|
except SystemExit:
|
|
parser.print_help()
|
|
continue
|
|
if len(opt.prompt)==0:
|
|
print("Try again with a prompt!")
|
|
continue
|
|
|
|
normalized_prompt = PromptFormatter(t2i,opt).normalize_prompt()
|
|
individual_images = not opt.grid
|
|
|
|
try:
|
|
file_writer = PngWriter(outdir,normalized_prompt,opt.batch_size)
|
|
callback = file_writer.write_image if individual_images else None
|
|
|
|
image_list = t2i.prompt2image(image_callback=callback,**vars(opt))
|
|
results = file_writer.files_written if individual_images else image_list
|
|
|
|
if opt.grid and len(results) > 0:
|
|
grid_img = file_writer.make_grid([r[0] for r in results])
|
|
filename = file_writer.unique_filename(results[0][1])
|
|
seeds = [a[1] for a in results]
|
|
results = [[filename,seeds]]
|
|
metadata_prompt = f'{normalized_prompt} -S{results[0][1]}'
|
|
file_writer.save_image_and_prompt_to_png(grid_img,metadata_prompt,filename)
|
|
|
|
except AssertionError as e:
|
|
print(e)
|
|
continue
|
|
|
|
except OSError as e:
|
|
print(e)
|
|
continue
|
|
|
|
print("Outputs:")
|
|
write_log_message(t2i,normalized_prompt,results,log)
|
|
|
|
print("goodbye!")
|
|
|
|
def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
|
|
import torch
|
|
|
|
if bg_upsampler == 'realesrgan':
|
|
if not torch.cuda.is_available(): # CPU
|
|
import warnings
|
|
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
|
|
'If you really want to use it, please modify the corresponding codes.')
|
|
bg_upsampler = None
|
|
else:
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
from realesrgan import RealESRGANer
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
bg_upsampler = RealESRGANer(
|
|
scale=2,
|
|
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
|
|
model=model,
|
|
tile=bg_tile,
|
|
tile_pad=10,
|
|
pre_pad=0,
|
|
half=True) # need to set False in CPU mode
|
|
else:
|
|
bg_upsampler = None
|
|
|
|
return bg_upsampler
|
|
|
|
# variant generation is going to be superseded by a generalized
|
|
# "prompt-morph" functionality
|
|
# def generate_variants(t2i,outdir,opt,previous_gens):
|
|
# variants = []
|
|
# print(f"Generating {opt.variants} variant(s)...")
|
|
# newopt = copy.deepcopy(opt)
|
|
# newopt.iterations = 1
|
|
# newopt.variants = None
|
|
# for r in previous_gens:
|
|
# newopt.init_img = r[0]
|
|
# prompt = PromptFormatter(t2i,newopt).normalize_prompt()
|
|
# print(f"] generating variant for {newopt.init_img}")
|
|
# for j in range(0,opt.variants):
|
|
# try:
|
|
# file_writer = PngWriter(outdir,prompt,newopt.batch_size)
|
|
# callback = file_writer.write_image
|
|
# t2i.prompt2image(image_callback=callback,**vars(newopt))
|
|
# results = file_writer.files_written
|
|
# variants.append([prompt,results])
|
|
# except AssertionError as e:
|
|
# print(e)
|
|
# continue
|
|
# print(f'{opt.variants} variants generated')
|
|
# return variants
|
|
|
|
|
|
def write_log_message(t2i,prompt,results,logfile):
|
|
''' logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata'''
|
|
last_seed = None
|
|
img_num = 1
|
|
seenit = {}
|
|
|
|
for r in results:
|
|
seed = r[1]
|
|
log_message = (f'{r[0]}: {prompt} -S{seed}')
|
|
|
|
print(log_message)
|
|
logfile.write(log_message+"\n")
|
|
logfile.flush()
|
|
|
|
def create_argv_parser():
|
|
parser = argparse.ArgumentParser(description="Parse script's command line args")
|
|
parser.add_argument("--laion400m",
|
|
"--latent_diffusion",
|
|
"-l",
|
|
dest='laion400m',
|
|
action='store_true',
|
|
help="fallback to the latent diffusion (laion400m) weights and config")
|
|
parser.add_argument("--from_file",
|
|
dest='infile',
|
|
type=str,
|
|
help="if specified, load prompts from this file")
|
|
parser.add_argument('-n','--iterations',
|
|
type=int,
|
|
default=1,
|
|
help="number of images to generate")
|
|
parser.add_argument('-F','--full_precision',
|
|
dest='full_precision',
|
|
action='store_true',
|
|
help="use slower full precision math for calculations")
|
|
parser.add_argument('--sampler','-m',
|
|
dest="sampler_name",
|
|
choices=['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'],
|
|
default='k_lms',
|
|
help="which sampler to use (k_lms) - can only be set on command line")
|
|
parser.add_argument('--outdir',
|
|
'-o',
|
|
type=str,
|
|
default="outputs/img-samples",
|
|
help="directory in which to place generated images and a log of prompts and seeds (outputs/img-samples")
|
|
parser.add_argument('--embedding_path',
|
|
type=str,
|
|
help="Path to a pre-trained embedding manager checkpoint - can only be set on command line")
|
|
parser.add_argument('--device',
|
|
'-d',
|
|
type=str,
|
|
default="cuda",
|
|
help="device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible")
|
|
# GFPGAN related args
|
|
parser.add_argument('--gfpgan',
|
|
dest='use_gfpgan',
|
|
action='store_true',
|
|
help="load gfpgan for use in the dreambot. Note: Enabling GFPGAN will require more GPU memory")
|
|
parser.add_argument("--gfpgan_upscale",
|
|
type=int,
|
|
default=2,
|
|
help="The final upsampling scale of the image. Default: 2. Only used if --gfpgan is specified")
|
|
parser.add_argument("--gfpgan_bg_upsampler",
|
|
type=str,
|
|
default='realesrgan',
|
|
help="Background upsampler. Default: None. Options: realesrgan, none. Only used if --gfpgan is specified")
|
|
parser.add_argument("--gfpgan_bg_tile",
|
|
type=int,
|
|
default=400,
|
|
help="Tile size for background sampler, 0 for no tile during testing. Default: 400. Only used if --gfpgan is specified")
|
|
parser.add_argument("--gfpgan_model_path",
|
|
type=str,
|
|
default='experiments/pretrained_models/GFPGANv1.3.pth',
|
|
help="indicates the path to the GFPGAN model, relative to --gfpgan_dir. Only used if --gfpgan is specified")
|
|
parser.add_argument("--gfpgan_dir",
|
|
type=str,
|
|
default='../GFPGAN',
|
|
help="indicates the directory containing the GFPGAN code. Only used if --gfpgan is specified")
|
|
return parser
|
|
|
|
|
|
def create_cmd_parser():
|
|
parser = argparse.ArgumentParser(description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12')
|
|
parser.add_argument('prompt')
|
|
parser.add_argument('-s','--steps',type=int,help="number of steps")
|
|
parser.add_argument('-S','--seed',type=int,help="image seed")
|
|
parser.add_argument('-n','--iterations',type=int,default=1,help="number of samplings to perform (slower, but will provide seeds for individual images)")
|
|
parser.add_argument('-b','--batch_size',type=int,default=1,help="number of images to produce per sampling (will not provide seeds for individual images!)")
|
|
parser.add_argument('-W','--width',type=int,help="image width, multiple of 64")
|
|
parser.add_argument('-H','--height',type=int,help="image height, multiple of 64")
|
|
parser.add_argument('-C','--cfg_scale',default=7.5,type=float,help="prompt configuration scale")
|
|
parser.add_argument('-g','--grid',action='store_true',help="generate a grid")
|
|
parser.add_argument('-i','--individual',action='store_true',help="generate individual files (default)")
|
|
parser.add_argument('-I','--init_img',type=str,help="path to input image for img2img mode (supersedes width and height)")
|
|
parser.add_argument('-f','--strength',default=0.75,type=float,help="strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely")
|
|
parser.add_argument('-G','--gfpgan_strength', default=0.5, type=float, help="The strength at which to apply the GFPGAN model to the result, in order to improve faces.")
|
|
# variants is going to be superseded by a generalized "prompt-morph" function
|
|
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
|
|
parser.add_argument('-x','--skip_normalize',action='store_true',help="skip subprompt weight normalization")
|
|
return parser
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|