InvokeAI/invokeai/app/invocations/image.py
psychedelicious 4221cf7731 fix(nodes): fix schema generation for output classes
All output classes need to have their properties flagged as `required` for the schema generation to work as needed.
2023-03-26 17:20:10 +11:00

304 lines
10 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_type: str = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
#fmt: off
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
#fmt: on
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
#fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
#fmt: on
class Config:
schema_extra = {
'required': [
'type',
'mask',
]
}
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation):
"""Load an image from a filename and provide it as output."""
#fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
return ImageOutput(
image=ImageField(image_type=self.image_type, image_name=self.image_name)
)
class ShowImageInvocation(BaseInvocation):
"""Displays a provided image, and passes it forward in the pipeline."""
type: Literal["show_image"] = "show_image"
# Inputs
image: ImageField = Field(default=None, description="The image to show")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
if image:
image.show()
# TODO: how to handle failure?
return ImageOutput(
image=ImageField(
image_type=self.image.image_type, image_name=self.image.image_name
)
)
class CropImageInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image."""
#fmt: off
type: Literal["crop"] = "crop"
# Inputs
image: ImageField = Field(default=None, description="The image to crop")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image_crop = Image.new(
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
)
image_crop.paste(image, (-self.x, -self.y))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_crop)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class PasteImageInvocation(BaseInvocation):
"""Pastes an image into another image."""
#fmt: off
type: Literal["paste"] = "paste"
# Inputs
base_image: ImageField = Field(default=None, description="The base image")
image: ImageField = Field(default=None, description="The image to paste")
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get(
self.base_image.image_type, self.base_image.image_name
)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
mask = (
None
if self.mask is None
else ImageOps.invert(
services.images.get(self.mask.image_type, self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
min_x = min(0, self.x)
min_y = min(0, self.y)
max_x = max(base_image.width, image.width + self.x)
max_y = max(base_image.height, image.height + self.y)
new_image = Image.new(
mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)
)
new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, new_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask."""
#fmt: off
type: Literal["tomask"] = "tomask"
# Inputs
image: ImageField = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
#fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image_mask = image.split()[-1]
if self.invert:
image_mask = ImageOps.invert(image_mask)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_mask)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation):
"""Blurs an image"""
#fmt: off
type: Literal["blur"] = "blur"
# Inputs
image: ImageField = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
blur = (
ImageFilter.GaussianBlur(self.radius)
if self.blur_type == "gaussian"
else ImageFilter.BoxBlur(self.radius)
)
blur_image = image.filter(blur)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, blur_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class LerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image"""
#fmt: off
type: Literal["lerp"] = "lerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
image_arr = image_arr * (self.max - self.min) + self.max
lerp_image = Image.fromarray(numpy.uint8(image_arr))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, lerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class InverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image"""
#fmt: off
type: Literal["ilerp"] = "ilerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = (
numpy.minimum(
numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1
)
* 255
)
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, ilerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)