InvokeAI/invokeai/backend/model_management/models/vae.py
Kevin Turner 4267132926 dep(diffusers): upgrade diffusers to 0.20
Removed `is_safetensors_available` as safetensors is now a required dependency of diffusers.
2023-08-17 13:42:29 -07:00

179 lines
5.4 KiB
Python

import os
from enum import Enum
from pathlib import Path
from typing import Optional
import safetensors
import torch
from omegaconf import OmegaConf
from invokeai.app.services.config import InvokeAIAppConfig
from .base import (
ModelBase,
ModelConfigBase,
BaseModelType,
ModelType,
SubModelType,
ModelVariantType,
EmptyConfigLoader,
calc_model_size_by_fs,
calc_model_size_by_data,
classproperty,
InvalidModelException,
ModelNotFoundException,
)
class VaeModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
class VaeModel(ModelBase):
# vae_class: Type
# model_size: int
class Config(ModelConfigBase):
model_format: VaeModelFormat
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.Vae
super().__init__(model_path, base_model, model_type)
try:
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
# config = json.loads(os.path.join(self.model_path, "config.json"))
except:
raise Exception("Invalid vae model! (config.json not found or invalid)")
try:
vae_class_name = config.get("_class_name", "AutoencoderKL")
self.vae_class = self._hf_definition_to_type(["diffusers", vae_class_name])
self.model_size = calc_model_size_by_fs(self.model_path)
except:
raise Exception("Invalid vae model! (Unkown vae type)")
def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is not None:
raise Exception("There is no child models in vae model")
return self.model_size
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
):
if child_type is not None:
raise Exception("There is no child models in vae model")
model = self.vae_class.from_pretrained(
self.model_path,
torch_dtype=torch_dtype,
)
# calc more accurate size
self.model_size = calc_model_size_by_data(model)
return model
@classproperty
def save_to_config(cls) -> bool:
return False
@classmethod
def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException(f"Does not exist as local file: {path}")
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "config.json")):
return VaeModelFormat.Diffusers
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return VaeModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {path}")
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase, # empty config or config of parent model
base_model: BaseModelType,
) -> str:
if cls.detect_format(model_path) == VaeModelFormat.Checkpoint:
return _convert_vae_ckpt_and_cache(
weights_path=model_path,
output_path=output_path,
base_model=base_model,
model_config=config,
)
else:
return model_path
# TODO: rework
def _convert_vae_ckpt_and_cache(
weights_path: str,
output_path: str,
base_model: BaseModelType,
model_config: ModelConfigBase,
) -> str:
"""
Convert the VAE indicated in mconfig into a diffusers AutoencoderKL
object, cache it to disk, and return Path to converted
file. If already on disk then just returns Path.
"""
app_config = InvokeAIAppConfig.get_config()
weights_path = app_config.root_dir / weights_path
output_path = Path(output_path)
"""
this size used only in when tiling enabled to separate input in tiles
sizes in configs from stable diffusion githubs(1 and 2) set to 256
on huggingface it:
1.5 - 512
1.5-inpainting - 256
2-inpainting - 512
2-depth - 256
2-base - 512
2 - 768
2.1-base - 768
2.1 - 768
"""
image_size = 512
# return cached version if it exists
if output_path.exists():
return output_path
if base_model in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
from .stable_diffusion import _select_ckpt_config
# all sd models use same vae settings
config_file = _select_ckpt_config(base_model, ModelVariantType.Normal)
else:
raise Exception(f"Vae conversion not supported for model type: {base_model}")
# this avoids circular import error
from ..convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
if weights_path.suffix == ".safetensors":
checkpoint = safetensors.torch.load_file(weights_path, device="cpu")
else:
checkpoint = torch.load(weights_path, map_location="cpu")
# sometimes weights are hidden under "state_dict", and sometimes not
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
config = OmegaConf.load(app_config.root_path / config_file)
vae_model = convert_ldm_vae_to_diffusers(
checkpoint=checkpoint,
vae_config=config,
image_size=image_size,
)
vae_model.save_pretrained(output_path, safe_serialization=True)
return output_path