mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
56098f370c
- add `RealESRGAN_x2plus.pth` model to installer - add `RealESRGAN_x2plus.pth` to `realesrgan` node - rename `RealESRGAN` to `ESRGAN` in nodes - make `scale_factor` optional in `img_scale` node
548 lines
18 KiB
Python
548 lines
18 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from typing import Literal, Optional
|
|
|
|
import numpy
|
|
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
|
from pydantic import BaseModel, Field
|
|
from typing import Union
|
|
|
|
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
|
from .baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
InvocationContext,
|
|
InvocationConfig,
|
|
)
|
|
|
|
|
|
class PILInvocationConfig(BaseModel):
|
|
"""Helper class to provide all PIL invocations with additional config"""
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["PIL", "image"],
|
|
},
|
|
}
|
|
|
|
|
|
class ImageOutput(BaseInvocationOutput):
|
|
"""Base class for invocations that output an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["image_output"] = "image_output"
|
|
image: ImageField = Field(default=None, description="The output image")
|
|
width: int = Field(description="The width of the image in pixels")
|
|
height: int = Field(description="The height of the image in pixels")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
schema_extra = {"required": ["type", "image", "width", "height"]}
|
|
|
|
|
|
class MaskOutput(BaseInvocationOutput):
|
|
"""Base class for invocations that output a mask"""
|
|
|
|
# fmt: off
|
|
type: Literal["mask"] = "mask"
|
|
mask: ImageField = Field(default=None, description="The output mask")
|
|
width: int = Field(description="The width of the mask in pixels")
|
|
height: int = Field(description="The height of the mask in pixels")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"required": [
|
|
"type",
|
|
"mask",
|
|
]
|
|
}
|
|
|
|
|
|
class LoadImageInvocation(BaseInvocation):
|
|
"""Load an image and provide it as output."""
|
|
|
|
# fmt: off
|
|
type: Literal["load_image"] = "load_image"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(
|
|
default=None, description="The image to load"
|
|
)
|
|
# fmt: on
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=self.image.image_name),
|
|
width=image.width,
|
|
height=image.height,
|
|
)
|
|
|
|
|
|
class ShowImageInvocation(BaseInvocation):
|
|
"""Displays a provided image, and passes it forward in the pipeline."""
|
|
|
|
type: Literal["show_image"] = "show_image"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(
|
|
default=None, description="The image to show"
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
if image:
|
|
image.show()
|
|
|
|
# TODO: how to handle failure?
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=self.image.image_name),
|
|
width=image.width,
|
|
height=image.height,
|
|
)
|
|
|
|
|
|
class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Crops an image to a specified box. The box can be outside of the image."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_crop"] = "img_crop"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to crop")
|
|
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
|
|
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
|
|
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
|
|
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
image_crop = Image.new(
|
|
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
|
|
)
|
|
image_crop.paste(image, (-self.x, -self.y))
|
|
|
|
image_dto = context.services.images.create(
|
|
image=image_crop,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Pastes an image into another image."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_paste"] = "img_paste"
|
|
|
|
# Inputs
|
|
base_image: Optional[ImageField] = Field(default=None, description="The base image")
|
|
image: Optional[ImageField] = Field(default=None, description="The image to paste")
|
|
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
|
|
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
|
|
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
base_image = context.services.images.get_pil_image(self.base_image.image_name)
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
mask = (
|
|
None
|
|
if self.mask is None
|
|
else ImageOps.invert(
|
|
context.services.images.get_pil_image(self.mask.image_name)
|
|
)
|
|
)
|
|
# TODO: probably shouldn't invert mask here... should user be required to do it?
|
|
|
|
min_x = min(0, self.x)
|
|
min_y = min(0, self.y)
|
|
max_x = max(base_image.width, image.width + self.x)
|
|
max_y = max(base_image.height, image.height + self.y)
|
|
|
|
new_image = Image.new(
|
|
mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)
|
|
)
|
|
new_image.paste(base_image, (abs(min_x), abs(min_y)))
|
|
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=new_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Extracts the alpha channel of an image as a mask."""
|
|
|
|
# fmt: off
|
|
type: Literal["tomask"] = "tomask"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to create the mask from")
|
|
invert: bool = Field(default=False, description="Whether or not to invert the mask")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> MaskOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
image_mask = image.split()[-1]
|
|
if self.invert:
|
|
image_mask = ImageOps.invert(image_mask)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=image_mask,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.MASK,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return MaskOutput(
|
|
mask=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_mul"] = "img_mul"
|
|
|
|
# Inputs
|
|
image1: Optional[ImageField] = Field(default=None, description="The first image to multiply")
|
|
image2: Optional[ImageField] = Field(default=None, description="The second image to multiply")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image1 = context.services.images.get_pil_image(self.image1.image_name)
|
|
image2 = context.services.images.get_pil_image(self.image2.image_name)
|
|
|
|
multiply_image = ImageChops.multiply(image1, image2)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=multiply_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
|
|
|
|
|
|
class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Gets a channel from an image."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_chan"] = "img_chan"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to get the channel from")
|
|
channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
channel_image = image.getchannel(self.channel)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=channel_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
|
|
|
|
|
class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Converts an image to a different mode."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_conv"] = "img_conv"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to convert")
|
|
mode: IMAGE_MODES = Field(default="L", description="The mode to convert to")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
converted_image = image.convert(self.mode)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=converted_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Blurs an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_blur"] = "img_blur"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to blur")
|
|
radius: float = Field(default=8.0, ge=0, description="The blur radius")
|
|
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
blur = (
|
|
ImageFilter.GaussianBlur(self.radius)
|
|
if self.blur_type == "gaussian"
|
|
else ImageFilter.BoxBlur(self.radius)
|
|
)
|
|
blur_image = image.filter(blur)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=blur_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
PIL_RESAMPLING_MODES = Literal[
|
|
"nearest",
|
|
"box",
|
|
"bilinear",
|
|
"hamming",
|
|
"bicubic",
|
|
"lanczos",
|
|
]
|
|
|
|
|
|
PIL_RESAMPLING_MAP = {
|
|
"nearest": Image.Resampling.NEAREST,
|
|
"box": Image.Resampling.BOX,
|
|
"bilinear": Image.Resampling.BILINEAR,
|
|
"hamming": Image.Resampling.HAMMING,
|
|
"bicubic": Image.Resampling.BICUBIC,
|
|
"lanczos": Image.Resampling.LANCZOS,
|
|
}
|
|
|
|
|
|
class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Resizes an image to specific dimensions"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_resize"] = "img_resize"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to resize")
|
|
width: Union[int, None] = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
|
|
height: Union[int, None] = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
|
|
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
|
|
|
|
resize_image = image.resize(
|
|
(self.width, self.height),
|
|
resample=resample_mode,
|
|
)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=resize_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Scales an image by a factor"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_scale"] = "img_scale"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to scale")
|
|
scale_factor: Optional[float] = Field(default=2.0, gt=0, description="The factor by which to scale the image")
|
|
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
|
|
width = int(image.width * self.scale_factor)
|
|
height = int(image.height * self.scale_factor)
|
|
|
|
resize_image = image.resize(
|
|
(width, height),
|
|
resample=resample_mode,
|
|
)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=resize_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Linear interpolation of all pixels of an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_lerp"] = "img_lerp"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
|
|
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
|
|
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
|
|
image_arr = image_arr * (self.max - self.min) + self.max
|
|
|
|
lerp_image = Image.fromarray(numpy.uint8(image_arr))
|
|
|
|
image_dto = context.services.images.create(
|
|
image=lerp_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Inverse linear interpolation of all pixels of an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_ilerp"] = "img_ilerp"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
|
|
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
|
|
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
image_arr = numpy.asarray(image, dtype=numpy.float32)
|
|
image_arr = (
|
|
numpy.minimum(
|
|
numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1
|
|
)
|
|
* 255
|
|
)
|
|
|
|
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
|
|
|
|
image_dto = context.services.images.create(
|
|
image=ilerp_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|