InvokeAI/invokeai/backend/ip_adapter/unet_patcher.py

50 lines
2.1 KiB
Python

from contextlib import contextmanager
from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.scales import Scales
def _prepare_attention_processors(unet: UNet2DConditionModel, ip_adapters: list[IPAdapter], scales: Scales):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
weights into them.
Note that the `unet` param is only used to determine attention block dimensions and naming.
"""
# Construct a dict of attention processors based on the UNet's architecture.
attn_procs = {}
for idx, name in enumerate(unet.attn_processors.keys()):
if name.endswith("attn1.processor"):
attn_procs[name] = AttnProcessor2_0()
else:
# Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = IPAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in ip_adapters], scales
)
return attn_procs
@contextmanager
def apply_ip_adapter_attention(unet: UNet2DConditionModel, ip_adapters: list[IPAdapter]):
"""A context manager that patches `unet` with IP-Adapter attention processors.
Yields:
Scales: The Scales object, which can be used to dynamically alter the scales of the IP-Adapters.
"""
scales = Scales([1.0] * len(ip_adapters))
attn_procs = _prepare_attention_processors(unet, ip_adapters, scales)
orig_attn_processors = unet.attn_processors
try:
# Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from the
# passed dict. So, if you wanted to keep the dict for future use, you'd have to make a moderately-shallow copy
# of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
unet.set_attn_processor(attn_procs)
yield scales
finally:
unet.set_attn_processor(orig_attn_processors)