mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
89 lines
3.4 KiB
Python
89 lines
3.4 KiB
Python
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from invokeai.app.invocations.baseinvocation import (
|
|
BaseInvocation,
|
|
InputField,
|
|
InvocationContext,
|
|
WithMetadata,
|
|
invocation,
|
|
)
|
|
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
|
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
|
|
|
|
|
@invocation(
|
|
"add_conditioning_mask",
|
|
title="Add Conditioning Mask",
|
|
tags=["conditioning"],
|
|
category="conditioning",
|
|
version="1.0.0",
|
|
)
|
|
class AddConditioningMaskInvocation(BaseInvocation):
|
|
"""Add a mask to an existing conditioning tensor."""
|
|
|
|
conditioning: ConditioningField = InputField(description="The conditioning tensor to add a mask to.")
|
|
image: ImageField = InputField(
|
|
description="A mask image to add to the conditioning tensor. Only the first channel of the image is used. "
|
|
"Pixels <128 are excluded from the mask, pixels >=128 are included in the mask."
|
|
)
|
|
|
|
@staticmethod
|
|
def convert_image_to_mask(image: Image.Image) -> torch.Tensor:
|
|
"""Convert a PIL image to a uint8 mask tensor."""
|
|
np_image = np.array(image)
|
|
torch_image = torch.from_numpy(np_image[0, :, :])
|
|
mask = torch_image >= 128
|
|
return mask.to(dtype=torch.uint8)
|
|
|
|
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
mask = self.convert_image_to_mask(image)
|
|
|
|
mask_name = f"{context.graph_execution_state_id}__{self.id}_conditioning_mask"
|
|
context.services.latents.save(mask_name, mask)
|
|
|
|
self.conditioning.mask_name = mask_name
|
|
return ConditioningOutput(conditioning=self.conditioning)
|
|
|
|
|
|
@invocation(
|
|
"rectangle_mask",
|
|
title="Create Rectangle Mask",
|
|
tags=["conditioning"],
|
|
category="conditioning",
|
|
version="1.0.0",
|
|
)
|
|
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
|
|
"""Create a mask image containing a rectangular mask region."""
|
|
|
|
height: int = InputField(description="The height of the image.")
|
|
width: int = InputField(description="The width of the image.")
|
|
y_top: int = InputField(description="The top y-coordinate of the rectangle (inclusive).")
|
|
y_bottom: int = InputField(description="The bottom y-coordinate of the rectangle (exclusive).")
|
|
x_left: int = InputField(description="The left x-coordinate of the rectangle (inclusive).")
|
|
x_right: int = InputField(description="The right x-coordinate of the rectangle (exclusive).")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
mask = np.zeros((self.height, self.width, 3), dtype=np.uint8)
|
|
mask[self.y_top : self.y_bottom, self.x_left : self.x_right, :] = 255
|
|
mask_image = Image.fromarray(mask)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=mask_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
metadata=self.metadata,
|
|
workflow=context.workflow,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|