InvokeAI/invokeai/backend/stable_diffusion
Lincoln Stein e93f4d632d
[util] Add generic torch device class (#6174)
* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-15 13:12:49 +00:00
..
diffusion Fix the padding behavior when max-pooling regional IP-Adapter masks to mirror the downscaling behavior of SD and SDXL. Prior to this change, denoising with input latent dimensions that were not evenly divisible by 8 would raise an exception. 2024-04-09 16:50:43 -04:00
schedulers make model manager v2 ready for PR review 2024-03-01 10:42:33 +11:00
__init__.py Remove unused code for attention map saving. 2024-03-02 08:25:41 -05:00
diffusers_pipeline.py [util] Add generic torch device class (#6174) 2024-04-15 13:12:49 +00:00
seamless.py fix(nodes): workaround seamless multi gpu error #6010 2024-03-29 08:56:38 +11:00