mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
56d0d80a39
This reverts commit 402cf9b0ee
.
750 lines
28 KiB
Python
750 lines
28 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import re
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from inspect import signature
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
AbstractSet,
|
|
Any,
|
|
Callable,
|
|
ClassVar,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Type,
|
|
TypeVar,
|
|
Union,
|
|
get_args,
|
|
get_type_hints,
|
|
)
|
|
|
|
import semver
|
|
from pydantic import BaseModel, Field, validator
|
|
from pydantic.fields import ModelField, Undefined
|
|
from pydantic.typing import NoArgAnyCallable
|
|
|
|
from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig
|
|
|
|
if TYPE_CHECKING:
|
|
from ..services.invocation_services import InvocationServices
|
|
|
|
|
|
class InvalidVersionError(ValueError):
|
|
pass
|
|
|
|
|
|
class FieldDescriptions:
|
|
denoising_start = "When to start denoising, expressed a percentage of total steps"
|
|
denoising_end = "When to stop denoising, expressed a percentage of total steps"
|
|
cfg_scale = "Classifier-Free Guidance scale"
|
|
scheduler = "Scheduler to use during inference"
|
|
positive_cond = "Positive conditioning tensor"
|
|
negative_cond = "Negative conditioning tensor"
|
|
noise = "Noise tensor"
|
|
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
|
|
unet = "UNet (scheduler, LoRAs)"
|
|
vae = "VAE"
|
|
cond = "Conditioning tensor"
|
|
controlnet_model = "ControlNet model to load"
|
|
vae_model = "VAE model to load"
|
|
lora_model = "LoRA model to load"
|
|
main_model = "Main model (UNet, VAE, CLIP) to load"
|
|
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
|
|
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
|
|
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
|
|
lora_weight = "The weight at which the LoRA is applied to each model"
|
|
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
|
|
raw_prompt = "Raw prompt text (no parsing)"
|
|
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
|
|
skipped_layers = "Number of layers to skip in text encoder"
|
|
seed = "Seed for random number generation"
|
|
steps = "Number of steps to run"
|
|
width = "Width of output (px)"
|
|
height = "Height of output (px)"
|
|
control = "ControlNet(s) to apply"
|
|
ip_adapter = "IP-Adapter to apply"
|
|
t2i_adapter = "T2I-Adapter(s) to apply"
|
|
denoised_latents = "Denoised latents tensor"
|
|
latents = "Latents tensor"
|
|
strength = "Strength of denoising (proportional to steps)"
|
|
core_metadata = "Optional core metadata to be written to image"
|
|
interp_mode = "Interpolation mode"
|
|
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
|
|
fp32 = "Whether or not to use full float32 precision"
|
|
precision = "Precision to use"
|
|
tiled = "Processing using overlapping tiles (reduce memory consumption)"
|
|
detect_res = "Pixel resolution for detection"
|
|
image_res = "Pixel resolution for output image"
|
|
safe_mode = "Whether or not to use safe mode"
|
|
scribble_mode = "Whether or not to use scribble mode"
|
|
scale_factor = "The factor by which to scale"
|
|
blend_alpha = (
|
|
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
|
|
)
|
|
num_1 = "The first number"
|
|
num_2 = "The second number"
|
|
mask = "The mask to use for the operation"
|
|
board = "The board to save the image to"
|
|
image = "The image to process"
|
|
tile_size = "Tile size"
|
|
inclusive_low = "The inclusive low value"
|
|
exclusive_high = "The exclusive high value"
|
|
decimal_places = "The number of decimal places to round to"
|
|
|
|
|
|
class Input(str, Enum):
|
|
"""
|
|
The type of input a field accepts.
|
|
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
|
|
are instantiated.
|
|
- `Input.Connection`: The field must have its value provided by a connection.
|
|
- `Input.Any`: The field may have its value provided either directly or by a connection.
|
|
"""
|
|
|
|
Connection = "connection"
|
|
Direct = "direct"
|
|
Any = "any"
|
|
|
|
|
|
class UIType(str, Enum):
|
|
"""
|
|
Type hints for the UI.
|
|
If a field should be provided a data type that does not exactly match the python type of the field, \
|
|
use this to provide the type that should be used instead. See the node development docs for detail \
|
|
on adding a new field type, which involves client-side changes.
|
|
"""
|
|
|
|
# region Primitives
|
|
Boolean = "boolean"
|
|
Color = "ColorField"
|
|
Conditioning = "ConditioningField"
|
|
Control = "ControlField"
|
|
Float = "float"
|
|
Image = "ImageField"
|
|
Integer = "integer"
|
|
Latents = "LatentsField"
|
|
String = "string"
|
|
# endregion
|
|
|
|
# region Collection Primitives
|
|
BooleanCollection = "BooleanCollection"
|
|
ColorCollection = "ColorCollection"
|
|
ConditioningCollection = "ConditioningCollection"
|
|
ControlCollection = "ControlCollection"
|
|
FloatCollection = "FloatCollection"
|
|
ImageCollection = "ImageCollection"
|
|
IntegerCollection = "IntegerCollection"
|
|
LatentsCollection = "LatentsCollection"
|
|
StringCollection = "StringCollection"
|
|
# endregion
|
|
|
|
# region Polymorphic Primitives
|
|
BooleanPolymorphic = "BooleanPolymorphic"
|
|
ColorPolymorphic = "ColorPolymorphic"
|
|
ConditioningPolymorphic = "ConditioningPolymorphic"
|
|
ControlPolymorphic = "ControlPolymorphic"
|
|
FloatPolymorphic = "FloatPolymorphic"
|
|
ImagePolymorphic = "ImagePolymorphic"
|
|
IntegerPolymorphic = "IntegerPolymorphic"
|
|
LatentsPolymorphic = "LatentsPolymorphic"
|
|
StringPolymorphic = "StringPolymorphic"
|
|
# endregion
|
|
|
|
# region Models
|
|
MainModel = "MainModelField"
|
|
SDXLMainModel = "SDXLMainModelField"
|
|
SDXLRefinerModel = "SDXLRefinerModelField"
|
|
ONNXModel = "ONNXModelField"
|
|
VaeModel = "VaeModelField"
|
|
LoRAModel = "LoRAModelField"
|
|
ControlNetModel = "ControlNetModelField"
|
|
IPAdapterModel = "IPAdapterModelField"
|
|
UNet = "UNetField"
|
|
Vae = "VaeField"
|
|
CLIP = "ClipField"
|
|
# endregion
|
|
|
|
# region Iterate/Collect
|
|
Collection = "Collection"
|
|
CollectionItem = "CollectionItem"
|
|
# endregion
|
|
|
|
# region Misc
|
|
Enum = "enum"
|
|
Scheduler = "Scheduler"
|
|
WorkflowField = "WorkflowField"
|
|
IsIntermediate = "IsIntermediate"
|
|
MetadataField = "MetadataField"
|
|
BoardField = "BoardField"
|
|
# endregion
|
|
|
|
|
|
class UIComponent(str, Enum):
|
|
"""
|
|
The type of UI component to use for a field, used to override the default components, which are \
|
|
inferred from the field type.
|
|
"""
|
|
|
|
None_ = "none"
|
|
Textarea = "textarea"
|
|
Slider = "slider"
|
|
|
|
|
|
class _InputField(BaseModel):
|
|
"""
|
|
*DO NOT USE*
|
|
This helper class is used to tell the client about our custom field attributes via OpenAPI
|
|
schema generation, and Typescript type generation from that schema. It serves no functional
|
|
purpose in the backend.
|
|
"""
|
|
|
|
input: Input
|
|
ui_hidden: bool
|
|
ui_type: Optional[UIType]
|
|
ui_component: Optional[UIComponent]
|
|
ui_order: Optional[int]
|
|
ui_choice_labels: Optional[dict[str, str]]
|
|
item_default: Optional[Any]
|
|
|
|
|
|
class _OutputField(BaseModel):
|
|
"""
|
|
*DO NOT USE*
|
|
This helper class is used to tell the client about our custom field attributes via OpenAPI
|
|
schema generation, and Typescript type generation from that schema. It serves no functional
|
|
purpose in the backend.
|
|
"""
|
|
|
|
ui_hidden: bool
|
|
ui_type: Optional[UIType]
|
|
ui_order: Optional[int]
|
|
|
|
|
|
def InputField(
|
|
*args: Any,
|
|
default: Any = Undefined,
|
|
default_factory: Optional[NoArgAnyCallable] = None,
|
|
alias: Optional[str] = None,
|
|
title: Optional[str] = None,
|
|
description: Optional[str] = None,
|
|
exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
|
|
include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
|
|
const: Optional[bool] = None,
|
|
gt: Optional[float] = None,
|
|
ge: Optional[float] = None,
|
|
lt: Optional[float] = None,
|
|
le: Optional[float] = None,
|
|
multiple_of: Optional[float] = None,
|
|
allow_inf_nan: Optional[bool] = None,
|
|
max_digits: Optional[int] = None,
|
|
decimal_places: Optional[int] = None,
|
|
min_items: Optional[int] = None,
|
|
max_items: Optional[int] = None,
|
|
unique_items: Optional[bool] = None,
|
|
min_length: Optional[int] = None,
|
|
max_length: Optional[int] = None,
|
|
allow_mutation: bool = True,
|
|
regex: Optional[str] = None,
|
|
discriminator: Optional[str] = None,
|
|
repr: bool = True,
|
|
input: Input = Input.Any,
|
|
ui_type: Optional[UIType] = None,
|
|
ui_component: Optional[UIComponent] = None,
|
|
ui_hidden: bool = False,
|
|
ui_order: Optional[int] = None,
|
|
ui_choice_labels: Optional[dict[str, str]] = None,
|
|
item_default: Optional[Any] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""
|
|
Creates an input field for an invocation.
|
|
|
|
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
|
|
that adds a few extra parameters to support graph execution and the node editor UI.
|
|
|
|
:param Input input: [Input.Any] The kind of input this field requires. \
|
|
`Input.Direct` means a value must be provided on instantiation. \
|
|
`Input.Connection` means the value must be provided by a connection. \
|
|
`Input.Any` means either will do.
|
|
|
|
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
|
|
In some situations, the field's type is not enough to infer the correct UI type. \
|
|
For example, model selection fields should render a dropdown UI component to select a model. \
|
|
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
|
|
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
|
|
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
|
|
|
|
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
|
|
The UI will always render a suitable component, but sometimes you want something different than the default. \
|
|
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
|
|
For this case, you could provide `UIComponent.Textarea`.
|
|
|
|
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
|
|
|
|
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
|
|
|
|
: param bool item_default: [None] Specifies the default item value, if this is a collection input. \
|
|
Ignored for non-collection fields..
|
|
"""
|
|
return Field(
|
|
*args,
|
|
default=default,
|
|
default_factory=default_factory,
|
|
alias=alias,
|
|
title=title,
|
|
description=description,
|
|
exclude=exclude,
|
|
include=include,
|
|
const=const,
|
|
gt=gt,
|
|
ge=ge,
|
|
lt=lt,
|
|
le=le,
|
|
multiple_of=multiple_of,
|
|
allow_inf_nan=allow_inf_nan,
|
|
max_digits=max_digits,
|
|
decimal_places=decimal_places,
|
|
min_items=min_items,
|
|
max_items=max_items,
|
|
unique_items=unique_items,
|
|
min_length=min_length,
|
|
max_length=max_length,
|
|
allow_mutation=allow_mutation,
|
|
regex=regex,
|
|
discriminator=discriminator,
|
|
repr=repr,
|
|
input=input,
|
|
ui_type=ui_type,
|
|
ui_component=ui_component,
|
|
ui_hidden=ui_hidden,
|
|
ui_order=ui_order,
|
|
item_default=item_default,
|
|
ui_choice_labels=ui_choice_labels,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
def OutputField(
|
|
*args: Any,
|
|
default: Any = Undefined,
|
|
default_factory: Optional[NoArgAnyCallable] = None,
|
|
alias: Optional[str] = None,
|
|
title: Optional[str] = None,
|
|
description: Optional[str] = None,
|
|
exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
|
|
include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
|
|
const: Optional[bool] = None,
|
|
gt: Optional[float] = None,
|
|
ge: Optional[float] = None,
|
|
lt: Optional[float] = None,
|
|
le: Optional[float] = None,
|
|
multiple_of: Optional[float] = None,
|
|
allow_inf_nan: Optional[bool] = None,
|
|
max_digits: Optional[int] = None,
|
|
decimal_places: Optional[int] = None,
|
|
min_items: Optional[int] = None,
|
|
max_items: Optional[int] = None,
|
|
unique_items: Optional[bool] = None,
|
|
min_length: Optional[int] = None,
|
|
max_length: Optional[int] = None,
|
|
allow_mutation: bool = True,
|
|
regex: Optional[str] = None,
|
|
discriminator: Optional[str] = None,
|
|
repr: bool = True,
|
|
ui_type: Optional[UIType] = None,
|
|
ui_hidden: bool = False,
|
|
ui_order: Optional[int] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""
|
|
Creates an output field for an invocation output.
|
|
|
|
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
|
|
that adds a few extra parameters to support graph execution and the node editor UI.
|
|
|
|
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
|
|
In some situations, the field's type is not enough to infer the correct UI type. \
|
|
For example, model selection fields should render a dropdown UI component to select a model. \
|
|
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
|
|
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
|
|
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
|
|
|
|
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
|
|
|
|
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
|
|
"""
|
|
return Field(
|
|
*args,
|
|
default=default,
|
|
default_factory=default_factory,
|
|
alias=alias,
|
|
title=title,
|
|
description=description,
|
|
exclude=exclude,
|
|
include=include,
|
|
const=const,
|
|
gt=gt,
|
|
ge=ge,
|
|
lt=lt,
|
|
le=le,
|
|
multiple_of=multiple_of,
|
|
allow_inf_nan=allow_inf_nan,
|
|
max_digits=max_digits,
|
|
decimal_places=decimal_places,
|
|
min_items=min_items,
|
|
max_items=max_items,
|
|
unique_items=unique_items,
|
|
min_length=min_length,
|
|
max_length=max_length,
|
|
allow_mutation=allow_mutation,
|
|
regex=regex,
|
|
discriminator=discriminator,
|
|
repr=repr,
|
|
ui_type=ui_type,
|
|
ui_hidden=ui_hidden,
|
|
ui_order=ui_order,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
class UIConfigBase(BaseModel):
|
|
"""
|
|
Provides additional node configuration to the UI.
|
|
This is used internally by the @invocation decorator logic. Do not use this directly.
|
|
"""
|
|
|
|
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
|
|
title: Optional[str] = Field(default=None, description="The node's display name")
|
|
category: Optional[str] = Field(default=None, description="The node's category")
|
|
version: Optional[str] = Field(
|
|
default=None, description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".'
|
|
)
|
|
|
|
|
|
class InvocationContext:
|
|
"""Initialized and provided to on execution of invocations."""
|
|
|
|
services: InvocationServices
|
|
graph_execution_state_id: str
|
|
queue_id: str
|
|
queue_item_id: int
|
|
queue_batch_id: str
|
|
|
|
def __init__(
|
|
self,
|
|
services: InvocationServices,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
):
|
|
self.services = services
|
|
self.graph_execution_state_id = graph_execution_state_id
|
|
self.queue_id = queue_id
|
|
self.queue_item_id = queue_item_id
|
|
self.queue_batch_id = queue_batch_id
|
|
|
|
|
|
class BaseInvocationOutput(BaseModel):
|
|
"""
|
|
Base class for all invocation outputs.
|
|
|
|
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
|
|
"""
|
|
|
|
@classmethod
|
|
def get_all_subclasses_tuple(cls):
|
|
subclasses = []
|
|
toprocess = [cls]
|
|
while len(toprocess) > 0:
|
|
next = toprocess.pop(0)
|
|
next_subclasses = next.__subclasses__()
|
|
subclasses.extend(next_subclasses)
|
|
toprocess.extend(next_subclasses)
|
|
return tuple(subclasses)
|
|
|
|
class Config:
|
|
@staticmethod
|
|
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
|
if "required" not in schema or not isinstance(schema["required"], list):
|
|
schema["required"] = list()
|
|
schema["required"].extend(["type"])
|
|
|
|
|
|
class RequiredConnectionException(Exception):
|
|
"""Raised when an field which requires a connection did not receive a value."""
|
|
|
|
def __init__(self, node_id: str, field_name: str):
|
|
super().__init__(f"Node {node_id} missing connections for field {field_name}")
|
|
|
|
|
|
class MissingInputException(Exception):
|
|
"""Raised when an field which requires some input, but did not receive a value."""
|
|
|
|
def __init__(self, node_id: str, field_name: str):
|
|
super().__init__(f"Node {node_id} missing value or connection for field {field_name}")
|
|
|
|
|
|
class BaseInvocation(ABC, BaseModel):
|
|
"""
|
|
A node to process inputs and produce outputs.
|
|
May use dependency injection in __init__ to receive providers.
|
|
|
|
All invocations must use the `@invocation` decorator to provide their unique type.
|
|
"""
|
|
|
|
@classmethod
|
|
def get_all_subclasses(cls):
|
|
app_config = InvokeAIAppConfig.get_config()
|
|
subclasses = []
|
|
toprocess = [cls]
|
|
while len(toprocess) > 0:
|
|
next = toprocess.pop(0)
|
|
next_subclasses = next.__subclasses__()
|
|
subclasses.extend(next_subclasses)
|
|
toprocess.extend(next_subclasses)
|
|
allowed_invocations = []
|
|
for sc in subclasses:
|
|
is_in_allowlist = (
|
|
sc.__fields__.get("type").default in app_config.allow_nodes
|
|
if isinstance(app_config.allow_nodes, list)
|
|
else True
|
|
)
|
|
|
|
is_in_denylist = (
|
|
sc.__fields__.get("type").default in app_config.deny_nodes
|
|
if isinstance(app_config.deny_nodes, list)
|
|
else False
|
|
)
|
|
|
|
if is_in_allowlist and not is_in_denylist:
|
|
allowed_invocations.append(sc)
|
|
return allowed_invocations
|
|
|
|
@classmethod
|
|
def get_invocations(cls):
|
|
return tuple(BaseInvocation.get_all_subclasses())
|
|
|
|
@classmethod
|
|
def get_invocations_map(cls):
|
|
# Get the type strings out of the literals and into a dictionary
|
|
return dict(
|
|
map(
|
|
lambda t: (get_args(get_type_hints(t)["type"])[0], t),
|
|
BaseInvocation.get_all_subclasses(),
|
|
)
|
|
)
|
|
|
|
@classmethod
|
|
def get_output_type(cls):
|
|
return signature(cls.invoke).return_annotation
|
|
|
|
class Config:
|
|
validate_assignment = True
|
|
validate_all = True
|
|
|
|
@staticmethod
|
|
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
|
uiconfig = getattr(model_class, "UIConfig", None)
|
|
if uiconfig and hasattr(uiconfig, "title"):
|
|
schema["title"] = uiconfig.title
|
|
if uiconfig and hasattr(uiconfig, "tags"):
|
|
schema["tags"] = uiconfig.tags
|
|
if uiconfig and hasattr(uiconfig, "category"):
|
|
schema["category"] = uiconfig.category
|
|
if uiconfig and hasattr(uiconfig, "version"):
|
|
schema["version"] = uiconfig.version
|
|
if "required" not in schema or not isinstance(schema["required"], list):
|
|
schema["required"] = list()
|
|
schema["required"].extend(["type", "id"])
|
|
|
|
@abstractmethod
|
|
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
|
|
"""Invoke with provided context and return outputs."""
|
|
pass
|
|
|
|
def __init__(self, **data):
|
|
# nodes may have required fields, that can accept input from connections
|
|
# on instantiation of the model, we need to exclude these from validation
|
|
restore = dict()
|
|
try:
|
|
field_names = list(self.__fields__.keys())
|
|
for field_name in field_names:
|
|
# if the field is required and may get its value from a connection, exclude it from validation
|
|
field = self.__fields__[field_name]
|
|
_input = field.field_info.extra.get("input", None)
|
|
if _input in [Input.Connection, Input.Any] and field.required:
|
|
if field_name not in data:
|
|
restore[field_name] = self.__fields__.pop(field_name)
|
|
# instantiate the node, which will validate the data
|
|
super().__init__(**data)
|
|
finally:
|
|
# restore the removed fields
|
|
for field_name, field in restore.items():
|
|
self.__fields__[field_name] = field
|
|
|
|
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
|
|
for field_name, field in self.__fields__.items():
|
|
_input = field.field_info.extra.get("input", None)
|
|
if field.required and not hasattr(self, field_name):
|
|
if _input == Input.Connection:
|
|
raise RequiredConnectionException(self.__fields__["type"].default, field_name)
|
|
elif _input == Input.Any:
|
|
raise MissingInputException(self.__fields__["type"].default, field_name)
|
|
|
|
# skip node cache codepath if it's disabled
|
|
if context.services.configuration.node_cache_size == 0:
|
|
return self.invoke(context)
|
|
|
|
output: BaseInvocationOutput
|
|
if self.use_cache:
|
|
key = context.services.invocation_cache.create_key(self)
|
|
cached_value = context.services.invocation_cache.get(key)
|
|
if cached_value is None:
|
|
context.services.logger.debug(f'Invocation cache miss for type "{self.get_type()}": {self.id}')
|
|
output = self.invoke(context)
|
|
context.services.invocation_cache.save(key, output)
|
|
return output
|
|
else:
|
|
context.services.logger.debug(f'Invocation cache hit for type "{self.get_type()}": {self.id}')
|
|
return cached_value
|
|
else:
|
|
context.services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
|
|
return self.invoke(context)
|
|
|
|
def get_type(self) -> str:
|
|
return self.__fields__["type"].default
|
|
|
|
id: str = Field(
|
|
description="The id of this instance of an invocation. Must be unique among all instances of invocations."
|
|
)
|
|
is_intermediate: bool = InputField(
|
|
default=False, description="Whether or not this is an intermediate invocation.", ui_type=UIType.IsIntermediate
|
|
)
|
|
workflow: Optional[str] = InputField(
|
|
default=None,
|
|
description="The workflow to save with the image",
|
|
ui_type=UIType.WorkflowField,
|
|
)
|
|
use_cache: bool = InputField(default=True, description="Whether or not to use the cache")
|
|
|
|
@validator("workflow", pre=True)
|
|
def validate_workflow_is_json(cls, v):
|
|
if v is None:
|
|
return None
|
|
try:
|
|
json.loads(v)
|
|
except json.decoder.JSONDecodeError:
|
|
raise ValueError("Workflow must be valid JSON")
|
|
return v
|
|
|
|
UIConfig: ClassVar[Type[UIConfigBase]]
|
|
|
|
|
|
GenericBaseInvocation = TypeVar("GenericBaseInvocation", bound=BaseInvocation)
|
|
|
|
|
|
def invocation(
|
|
invocation_type: str,
|
|
title: Optional[str] = None,
|
|
tags: Optional[list[str]] = None,
|
|
category: Optional[str] = None,
|
|
version: Optional[str] = None,
|
|
use_cache: Optional[bool] = True,
|
|
) -> Callable[[Type[GenericBaseInvocation]], Type[GenericBaseInvocation]]:
|
|
"""
|
|
Adds metadata to an invocation.
|
|
|
|
:param str invocation_type: The type of the invocation. Must be unique among all invocations.
|
|
:param Optional[str] title: Adds a title to the invocation. Use if the auto-generated title isn't quite right. Defaults to None.
|
|
:param Optional[list[str]] tags: Adds tags to the invocation. Invocations may be searched for by their tags. Defaults to None.
|
|
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
|
|
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
|
|
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
|
|
"""
|
|
|
|
def wrapper(cls: Type[GenericBaseInvocation]) -> Type[GenericBaseInvocation]:
|
|
# Validate invocation types on creation of invocation classes
|
|
# TODO: ensure unique?
|
|
if re.compile(r"^\S+$").match(invocation_type) is None:
|
|
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
|
|
|
|
# Add OpenAPI schema extras
|
|
uiconf_name = cls.__qualname__ + ".UIConfig"
|
|
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
|
|
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
|
|
if title is not None:
|
|
cls.UIConfig.title = title
|
|
if tags is not None:
|
|
cls.UIConfig.tags = tags
|
|
if category is not None:
|
|
cls.UIConfig.category = category
|
|
if version is not None:
|
|
try:
|
|
semver.Version.parse(version)
|
|
except ValueError as e:
|
|
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
|
|
cls.UIConfig.version = version
|
|
if use_cache is not None:
|
|
cls.__fields__["use_cache"].default = use_cache
|
|
|
|
# Add the invocation type to the pydantic model of the invocation
|
|
invocation_type_annotation = Literal[invocation_type] # type: ignore
|
|
invocation_type_field = ModelField.infer(
|
|
name="type",
|
|
value=invocation_type,
|
|
annotation=invocation_type_annotation,
|
|
class_validators=None,
|
|
config=cls.__config__,
|
|
)
|
|
cls.__fields__.update({"type": invocation_type_field})
|
|
# to support 3.9, 3.10 and 3.11, as described in https://docs.python.org/3/howto/annotations.html
|
|
if annotations := cls.__dict__.get("__annotations__", None):
|
|
annotations.update({"type": invocation_type_annotation})
|
|
return cls
|
|
|
|
return wrapper
|
|
|
|
|
|
GenericBaseInvocationOutput = TypeVar("GenericBaseInvocationOutput", bound=BaseInvocationOutput)
|
|
|
|
|
|
def invocation_output(
|
|
output_type: str,
|
|
) -> Callable[[Type[GenericBaseInvocationOutput]], Type[GenericBaseInvocationOutput]]:
|
|
"""
|
|
Adds metadata to an invocation output.
|
|
|
|
:param str output_type: The type of the invocation output. Must be unique among all invocation outputs.
|
|
"""
|
|
|
|
def wrapper(cls: Type[GenericBaseInvocationOutput]) -> Type[GenericBaseInvocationOutput]:
|
|
# Validate output types on creation of invocation output classes
|
|
# TODO: ensure unique?
|
|
if re.compile(r"^\S+$").match(output_type) is None:
|
|
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
|
|
|
|
# Add the output type to the pydantic model of the invocation output
|
|
output_type_annotation = Literal[output_type] # type: ignore
|
|
output_type_field = ModelField.infer(
|
|
name="type",
|
|
value=output_type,
|
|
annotation=output_type_annotation,
|
|
class_validators=None,
|
|
config=cls.__config__,
|
|
)
|
|
cls.__fields__.update({"type": output_type_field})
|
|
|
|
# to support 3.9, 3.10 and 3.11, as described in https://docs.python.org/3/howto/annotations.html
|
|
if annotations := cls.__dict__.get("__annotations__", None):
|
|
annotations.update({"type": output_type_annotation})
|
|
|
|
return cls
|
|
|
|
return wrapper
|