mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
9997fde144
This allows reliable distribution of the initial 'configs' directory with the Python package, and enables the configuration script to be running from anywhere, as long as the virtual environment is available on the sys.path
80 lines
2.2 KiB
YAML
80 lines
2.2 KiB
YAML
model:
|
|
base_learning_rate: 7.5e-05
|
|
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
|
params:
|
|
linear_start: 0.00085
|
|
linear_end: 0.0120
|
|
num_timesteps_cond: 1
|
|
log_every_t: 200
|
|
timesteps: 1000
|
|
first_stage_key: "jpg"
|
|
cond_stage_key: "txt"
|
|
image_size: 64
|
|
channels: 4
|
|
cond_stage_trainable: false # Note: different from the one we trained before
|
|
conditioning_key: hybrid # important
|
|
monitor: val/loss_simple_ema
|
|
scale_factor: 0.18215
|
|
finetune_keys: null
|
|
|
|
scheduler_config: # 10000 warmup steps
|
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
|
params:
|
|
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
|
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
|
f_start: [ 1.e-6 ]
|
|
f_max: [ 1. ]
|
|
f_min: [ 1. ]
|
|
|
|
personalization_config:
|
|
target: ldm.modules.embedding_manager.EmbeddingManager
|
|
params:
|
|
placeholder_strings: ["*"]
|
|
initializer_words: ['sculpture']
|
|
per_image_tokens: false
|
|
num_vectors_per_token: 8
|
|
progressive_words: False
|
|
|
|
unet_config:
|
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
|
params:
|
|
image_size: 32 # unused
|
|
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
|
|
out_channels: 4
|
|
model_channels: 320
|
|
attention_resolutions: [ 4, 2, 1 ]
|
|
num_res_blocks: 2
|
|
channel_mult: [ 1, 2, 4, 4 ]
|
|
num_heads: 8
|
|
use_spatial_transformer: True
|
|
transformer_depth: 1
|
|
context_dim: 768
|
|
use_checkpoint: True
|
|
legacy: False
|
|
|
|
first_stage_config:
|
|
target: ldm.models.autoencoder.AutoencoderKL
|
|
params:
|
|
embed_dim: 4
|
|
monitor: val/rec_loss
|
|
ddconfig:
|
|
double_z: true
|
|
z_channels: 4
|
|
resolution: 256
|
|
in_channels: 3
|
|
out_ch: 3
|
|
ch: 128
|
|
ch_mult:
|
|
- 1
|
|
- 2
|
|
- 4
|
|
- 4
|
|
num_res_blocks: 2
|
|
attn_resolutions: []
|
|
dropout: 0.0
|
|
lossconfig:
|
|
target: torch.nn.Identity
|
|
|
|
cond_stage_config:
|
|
target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder
|