mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
8a0d45ac5a
* new OffloadingDevice loads one model at a time, on demand * fixup! new OffloadingDevice loads one model at a time, on demand * fix(prompt_to_embeddings): call the text encoder directly instead of its forward method allowing any associated hooks to run with it. * more attempts to get things on the right device from the offloader * more attempts to get things on the right device from the offloader * make offloading methods an explicit part of the pipeline interface * inlining some calls where device is only used once * ensure model group is ready after pipeline.to is called * fixup! Strategize slicing based on free [V]RAM (#2572) * doc(offloading): docstrings for offloading.ModelGroup * doc(offloading): docstrings for offloading-related pipeline methods * refactor(offloading): s/SimpleModelGroup/FullyLoadedModelGroup * refactor(offloading): s/HotSeatModelGroup/LazilyLoadedModelGroup to frame it is the same terms as "FullyLoadedModelGroup" --------- Co-authored-by: Damian Stewart <null@damianstewart.com>
1182 lines
43 KiB
Python
1182 lines
43 KiB
Python
"""
|
|
Manage a cache of Stable Diffusion model files for fast switching.
|
|
They are moved between GPU and CPU as necessary. If CPU memory falls
|
|
below a preset minimum, the least recently used model will be
|
|
cleared and loaded from disk when next needed.
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import contextlib
|
|
import gc
|
|
import hashlib
|
|
import io
|
|
import os
|
|
import sys
|
|
import textwrap
|
|
import time
|
|
import warnings
|
|
from pathlib import Path
|
|
from shutil import move, rmtree
|
|
from typing import Any, Optional, Union
|
|
|
|
import safetensors
|
|
import safetensors.torch
|
|
import torch
|
|
import transformers
|
|
from diffusers import AutoencoderKL
|
|
from diffusers import logging as dlogging
|
|
from huggingface_hub import scan_cache_dir
|
|
from omegaconf import OmegaConf
|
|
from omegaconf.dictconfig import DictConfig
|
|
from picklescan.scanner import scan_file_path
|
|
|
|
from ldm.invoke.generator.diffusers_pipeline import \
|
|
StableDiffusionGeneratorPipeline
|
|
from ldm.invoke.globals import (Globals, global_autoscan_dir, global_cache_dir,
|
|
global_models_dir)
|
|
from ldm.util import (ask_user, download_with_progress_bar,
|
|
instantiate_from_config)
|
|
|
|
DEFAULT_MAX_MODELS = 2
|
|
VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
|
|
"vae-ft-mse-840000-ema-pruned": "stabilityai/sd-vae-ft-mse",
|
|
}
|
|
|
|
|
|
class ModelManager(object):
|
|
def __init__(
|
|
self,
|
|
config: OmegaConf,
|
|
device_type: str | torch.device = "cpu",
|
|
precision: str = "float16",
|
|
max_loaded_models=DEFAULT_MAX_MODELS,
|
|
sequential_offload = False
|
|
):
|
|
"""
|
|
Initialize with the path to the models.yaml config file,
|
|
the torch device type, and precision. The optional
|
|
min_avail_mem argument specifies how much unused system
|
|
(CPU) memory to preserve. The cache of models in RAM will
|
|
grow until this value is approached. Default is 2G.
|
|
"""
|
|
# prevent nasty-looking CLIP log message
|
|
transformers.logging.set_verbosity_error()
|
|
self.config = config
|
|
self.precision = precision
|
|
self.device = torch.device(device_type)
|
|
self.max_loaded_models = max_loaded_models
|
|
self.models = {}
|
|
self.stack = [] # this is an LRU FIFO
|
|
self.current_model = None
|
|
self.sequential_offload = sequential_offload
|
|
|
|
def valid_model(self, model_name: str) -> bool:
|
|
"""
|
|
Given a model name, returns True if it is a valid
|
|
identifier.
|
|
"""
|
|
return model_name in self.config
|
|
|
|
def get_model(self, model_name: str):
|
|
"""
|
|
Given a model named identified in models.yaml, return
|
|
the model object. If in RAM will load into GPU VRAM.
|
|
If on disk, will load from there.
|
|
"""
|
|
if not self.valid_model(model_name):
|
|
print(
|
|
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
|
|
)
|
|
return self.current_model
|
|
|
|
if self.current_model != model_name:
|
|
if model_name not in self.models: # make room for a new one
|
|
self._make_cache_room()
|
|
self.offload_model(self.current_model)
|
|
|
|
if model_name in self.models:
|
|
requested_model = self.models[model_name]["model"]
|
|
print(f">> Retrieving model {model_name} from system RAM cache")
|
|
self.models[model_name]["model"] = self._model_from_cpu(requested_model)
|
|
width = self.models[model_name]["width"]
|
|
height = self.models[model_name]["height"]
|
|
hash = self.models[model_name]["hash"]
|
|
|
|
else: # we're about to load a new model, so potentially offload the least recently used one
|
|
requested_model, width, height, hash = self._load_model(model_name)
|
|
self.models[model_name] = {
|
|
"model": requested_model,
|
|
"width": width,
|
|
"height": height,
|
|
"hash": hash,
|
|
}
|
|
|
|
self.current_model = model_name
|
|
self._push_newest_model(model_name)
|
|
return {
|
|
"model": requested_model,
|
|
"width": width,
|
|
"height": height,
|
|
"hash": hash,
|
|
}
|
|
|
|
def default_model(self) -> str | None:
|
|
"""
|
|
Returns the name of the default model, or None
|
|
if none is defined.
|
|
"""
|
|
for model_name in self.config:
|
|
if self.config[model_name].get("default"):
|
|
return model_name
|
|
|
|
def set_default_model(self, model_name: str) -> None:
|
|
"""
|
|
Set the default model. The change will not take
|
|
effect until you call model_manager.commit()
|
|
"""
|
|
assert model_name in self.model_names(), f"unknown model '{model_name}'"
|
|
|
|
config = self.config
|
|
for model in config:
|
|
config[model].pop("default", None)
|
|
config[model_name]["default"] = True
|
|
|
|
def model_info(self, model_name: str) -> dict:
|
|
"""
|
|
Given a model name returns the OmegaConf (dict-like) object describing it.
|
|
"""
|
|
if model_name not in self.config:
|
|
return None
|
|
return self.config[model_name]
|
|
|
|
def model_names(self) -> list[str]:
|
|
"""
|
|
Return a list consisting of all the names of models defined in models.yaml
|
|
"""
|
|
return list(self.config.keys())
|
|
|
|
def is_legacy(self, model_name: str) -> bool:
|
|
"""
|
|
Return true if this is a legacy (.ckpt) model
|
|
"""
|
|
# if we are converting legacy files automatically, then
|
|
# there are no legacy ckpts!
|
|
if Globals.ckpt_convert:
|
|
return False
|
|
info = self.model_info(model_name)
|
|
if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")):
|
|
return True
|
|
return False
|
|
|
|
def list_models(self) -> dict:
|
|
"""
|
|
Return a dict of models in the format:
|
|
{ model_name1: {'status': ('active'|'cached'|'not loaded'),
|
|
'description': description,
|
|
'format': ('ckpt'|'diffusers'|'vae'),
|
|
},
|
|
model_name2: { etc }
|
|
Please use model_manager.models() to get all the model names,
|
|
model_manager.model_info('model-name') to get the stanza for the model
|
|
named 'model-name', and model_manager.config to get the full OmegaConf
|
|
object derived from models.yaml
|
|
"""
|
|
models = {}
|
|
for name in sorted(self.config, key=str.casefold):
|
|
stanza = self.config[name]
|
|
|
|
# don't include VAEs in listing (legacy style)
|
|
if "config" in stanza and "/VAE/" in stanza["config"]:
|
|
continue
|
|
|
|
models[name] = dict()
|
|
format = stanza.get("format", "ckpt") # Determine Format
|
|
|
|
# Common Attribs
|
|
description = stanza.get("description", None)
|
|
if self.current_model == name:
|
|
status = "active"
|
|
elif name in self.models:
|
|
status = "cached"
|
|
else:
|
|
status = "not loaded"
|
|
models[name].update(
|
|
description=description,
|
|
format=format,
|
|
status=status,
|
|
)
|
|
|
|
# Checkpoint Config Parse
|
|
if format == "ckpt":
|
|
models[name].update(
|
|
config=str(stanza.get("config", None)),
|
|
weights=str(stanza.get("weights", None)),
|
|
vae=str(stanza.get("vae", None)),
|
|
width=str(stanza.get("width", 512)),
|
|
height=str(stanza.get("height", 512)),
|
|
)
|
|
|
|
# Diffusers Config Parse
|
|
if vae := stanza.get("vae", None):
|
|
if isinstance(vae, DictConfig):
|
|
vae = dict(
|
|
repo_id=str(vae.get("repo_id", None)),
|
|
path=str(vae.get("path", None)),
|
|
subfolder=str(vae.get("subfolder", None)),
|
|
)
|
|
|
|
if format == "diffusers":
|
|
models[name].update(
|
|
vae=vae,
|
|
repo_id=str(stanza.get("repo_id", None)),
|
|
path=str(stanza.get("path", None)),
|
|
)
|
|
|
|
return models
|
|
|
|
def print_models(self) -> None:
|
|
"""
|
|
Print a table of models, their descriptions, and load status
|
|
"""
|
|
models = self.list_models()
|
|
for name in models:
|
|
if models[name]["format"] == "vae":
|
|
continue
|
|
line = f'{name:25s} {models[name]["status"]:>10s} {models[name]["format"]:10s} {models[name]["description"]}'
|
|
if models[name]["status"] == "active":
|
|
line = f"\033[1m{line}\033[0m"
|
|
print(line)
|
|
|
|
def del_model(self, model_name: str, delete_files: bool = False) -> None:
|
|
"""
|
|
Delete the named model.
|
|
"""
|
|
omega = self.config
|
|
if model_name not in omega:
|
|
print(f"** Unknown model {model_name}")
|
|
return
|
|
# save these for use in deletion later
|
|
conf = omega[model_name]
|
|
repo_id = conf.get("repo_id", None)
|
|
path = self._abs_path(conf.get("path", None))
|
|
weights = self._abs_path(conf.get("weights", None))
|
|
|
|
del omega[model_name]
|
|
if model_name in self.stack:
|
|
self.stack.remove(model_name)
|
|
if delete_files:
|
|
if weights:
|
|
print(f"** deleting file {weights}")
|
|
Path(weights).unlink(missing_ok=True)
|
|
elif path:
|
|
print(f"** deleting directory {path}")
|
|
rmtree(path, ignore_errors=True)
|
|
elif repo_id:
|
|
print(f"** deleting the cached model directory for {repo_id}")
|
|
self._delete_model_from_cache(repo_id)
|
|
|
|
def add_model(
|
|
self, model_name: str, model_attributes: dict, clobber: bool = False
|
|
) -> None:
|
|
"""
|
|
Update the named model with a dictionary of attributes. Will fail with an
|
|
assertion error if the name already exists. Pass clobber=True to overwrite.
|
|
On a successful update, the config will be changed in memory and the
|
|
method will return True. Will fail with an assertion error if provided
|
|
attributes are incorrect or the model name is missing.
|
|
"""
|
|
omega = self.config
|
|
assert "format" in model_attributes, 'missing required field "format"'
|
|
if model_attributes["format"] == "diffusers":
|
|
assert (
|
|
"description" in model_attributes
|
|
), 'required field "description" is missing'
|
|
assert (
|
|
"path" in model_attributes or "repo_id" in model_attributes
|
|
), 'model must have either the "path" or "repo_id" fields defined'
|
|
else:
|
|
for field in ("description", "weights", "height", "width", "config"):
|
|
assert field in model_attributes, f"required field {field} is missing"
|
|
|
|
assert (
|
|
clobber or model_name not in omega
|
|
), f'attempt to overwrite existing model definition "{model_name}"'
|
|
|
|
omega[model_name] = model_attributes
|
|
|
|
if "weights" in omega[model_name]:
|
|
omega[model_name]["weights"].replace("\\", "/")
|
|
|
|
if clobber:
|
|
self._invalidate_cached_model(model_name)
|
|
|
|
def _load_model(self, model_name: str):
|
|
"""Load and initialize the model from configuration variables passed at object creation time"""
|
|
if model_name not in self.config:
|
|
print(
|
|
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
|
)
|
|
return
|
|
|
|
mconfig = self.config[model_name]
|
|
|
|
# for usage statistics
|
|
if self._has_cuda():
|
|
torch.cuda.reset_peak_memory_stats()
|
|
torch.cuda.empty_cache()
|
|
|
|
tic = time.time()
|
|
|
|
# this does the work
|
|
model_format = mconfig.get("format", "ckpt")
|
|
if model_format == "ckpt":
|
|
weights = mconfig.weights
|
|
print(f">> Loading {model_name} from {weights}")
|
|
model, width, height, model_hash = self._load_ckpt_model(
|
|
model_name, mconfig
|
|
)
|
|
elif model_format == "diffusers":
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
model, width, height, model_hash = self._load_diffusers_model(mconfig)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unknown model format {model_name}: {model_format}"
|
|
)
|
|
|
|
# usage statistics
|
|
toc = time.time()
|
|
print(">> Model loaded in", "%4.2fs" % (toc - tic))
|
|
if self._has_cuda():
|
|
print(
|
|
">> Max VRAM used to load the model:",
|
|
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
|
|
"\n>> Current VRAM usage:"
|
|
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
|
|
)
|
|
return model, width, height, model_hash
|
|
|
|
def _load_ckpt_model(self, model_name, mconfig):
|
|
config = mconfig.config
|
|
weights = mconfig.weights
|
|
vae = mconfig.get("vae")
|
|
width = mconfig.width
|
|
height = mconfig.height
|
|
|
|
if not os.path.isabs(config):
|
|
config = os.path.join(Globals.root, config)
|
|
if not os.path.isabs(weights):
|
|
weights = os.path.normpath(os.path.join(Globals.root, weights))
|
|
|
|
# if converting automatically to diffusers, then we do the conversion and return
|
|
# a diffusers pipeline
|
|
if Globals.ckpt_convert:
|
|
print(
|
|
f">> Converting legacy checkpoint {model_name} into a diffusers model..."
|
|
)
|
|
from ldm.invoke.ckpt_to_diffuser import \
|
|
load_pipeline_from_original_stable_diffusion_ckpt
|
|
|
|
if vae_config := self._choose_diffusers_vae(model_name):
|
|
vae = self._load_vae(vae_config)
|
|
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
|
|
checkpoint_path=weights,
|
|
original_config_file=config,
|
|
vae=vae,
|
|
return_generator_pipeline=True,
|
|
)
|
|
return (
|
|
pipeline.to(self.device).to(
|
|
torch.float16 if self.precision == "float16" else torch.float32
|
|
),
|
|
width,
|
|
height,
|
|
"NOHASH",
|
|
)
|
|
|
|
# scan model
|
|
self.scan_model(model_name, weights)
|
|
|
|
print(f">> Loading {model_name} from {weights}")
|
|
|
|
# for usage statistics
|
|
if self._has_cuda():
|
|
torch.cuda.reset_peak_memory_stats()
|
|
torch.cuda.empty_cache()
|
|
|
|
tic = time.time()
|
|
|
|
# this does the work
|
|
if not os.path.isabs(config):
|
|
config = os.path.join(Globals.root, config)
|
|
omega_config = OmegaConf.load(config)
|
|
with open(weights, "rb") as f:
|
|
weight_bytes = f.read()
|
|
model_hash = self._cached_sha256(weights, weight_bytes)
|
|
sd = None
|
|
if weights.endswith(".safetensors"):
|
|
sd = safetensors.torch.load(weight_bytes)
|
|
else:
|
|
sd = torch.load(io.BytesIO(weight_bytes), map_location="cpu")
|
|
del weight_bytes
|
|
# merged models from auto11 merge board are flat for some reason
|
|
if "state_dict" in sd:
|
|
sd = sd["state_dict"]
|
|
|
|
print(" | Forcing garbage collection prior to loading new model")
|
|
gc.collect()
|
|
model = instantiate_from_config(omega_config.model)
|
|
model.load_state_dict(sd, strict=False)
|
|
|
|
if self.precision == "float16":
|
|
print(" | Using faster float16 precision")
|
|
model = model.to(torch.float16)
|
|
else:
|
|
print(" | Using more accurate float32 precision")
|
|
|
|
# look and load a matching vae file. Code borrowed from AUTOMATIC1111 modules/sd_models.py
|
|
if vae:
|
|
if not os.path.isabs(vae):
|
|
vae = os.path.normpath(os.path.join(Globals.root, vae))
|
|
if os.path.exists(vae):
|
|
print(f" | Loading VAE weights from: {vae}")
|
|
vae_ckpt = None
|
|
vae_dict = None
|
|
if vae.endswith(".safetensors"):
|
|
vae_ckpt = safetensors.torch.load_file(vae)
|
|
vae_dict = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss"}
|
|
else:
|
|
vae_ckpt = torch.load(vae, map_location="cpu")
|
|
vae_dict = {
|
|
k: v
|
|
for k, v in vae_ckpt["state_dict"].items()
|
|
if k[0:4] != "loss"
|
|
}
|
|
model.first_stage_model.load_state_dict(vae_dict, strict=False)
|
|
else:
|
|
print(f" | VAE file {vae} not found. Skipping.")
|
|
|
|
model.to(self.device)
|
|
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
|
model.cond_stage_model.device = self.device
|
|
|
|
model.eval()
|
|
|
|
for module in model.modules():
|
|
if isinstance(module, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
|
|
module._orig_padding_mode = module.padding_mode
|
|
|
|
# usage statistics
|
|
toc = time.time()
|
|
print(">> Model loaded in", "%4.2fs" % (toc - tic))
|
|
|
|
if self._has_cuda():
|
|
print(
|
|
">> Max VRAM used to load the model:",
|
|
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
|
|
"\n>> Current VRAM usage:"
|
|
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
|
|
)
|
|
|
|
return model, width, height, model_hash
|
|
|
|
def _load_diffusers_model(self, mconfig):
|
|
name_or_path = self.model_name_or_path(mconfig)
|
|
using_fp16 = self.precision == "float16"
|
|
|
|
print(f">> Loading diffusers model from {name_or_path}")
|
|
if using_fp16:
|
|
print(" | Using faster float16 precision")
|
|
else:
|
|
print(" | Using more accurate float32 precision")
|
|
|
|
# TODO: scan weights maybe?
|
|
pipeline_args: dict[str, Any] = dict(
|
|
safety_checker=None, local_files_only=not Globals.internet_available
|
|
)
|
|
if "vae" in mconfig and mconfig["vae"] is not None:
|
|
vae = self._load_vae(mconfig["vae"])
|
|
pipeline_args.update(vae=vae)
|
|
if not isinstance(name_or_path, Path):
|
|
pipeline_args.update(cache_dir=global_cache_dir("diffusers"))
|
|
if using_fp16:
|
|
pipeline_args.update(torch_dtype=torch.float16)
|
|
fp_args_list = [{"revision": "fp16"}, {}]
|
|
else:
|
|
fp_args_list = [{}]
|
|
|
|
verbosity = dlogging.get_verbosity()
|
|
dlogging.set_verbosity_error()
|
|
|
|
pipeline = None
|
|
for fp_args in fp_args_list:
|
|
try:
|
|
pipeline = StableDiffusionGeneratorPipeline.from_pretrained(
|
|
name_or_path,
|
|
**pipeline_args,
|
|
**fp_args,
|
|
)
|
|
except OSError as e:
|
|
if str(e).startswith("fp16 is not a valid"):
|
|
pass
|
|
else:
|
|
print(
|
|
f"** An unexpected error occurred while downloading the model: {e})"
|
|
)
|
|
if pipeline:
|
|
break
|
|
|
|
dlogging.set_verbosity(verbosity)
|
|
assert pipeline is not None, OSError(f'"{name_or_path}" could not be loaded')
|
|
|
|
if self.sequential_offload:
|
|
pipeline.enable_offload_submodels(self.device)
|
|
else:
|
|
pipeline.to(self.device)
|
|
|
|
model_hash = self._diffuser_sha256(name_or_path)
|
|
|
|
# square images???
|
|
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
|
height = width
|
|
|
|
print(f" | Default image dimensions = {width} x {height}")
|
|
|
|
return pipeline, width, height, model_hash
|
|
|
|
def model_name_or_path(self, model_name: Union[str, DictConfig]) -> str | Path:
|
|
if isinstance(model_name, DictConfig) or isinstance(model_name, dict):
|
|
mconfig = model_name
|
|
elif model_name in self.config:
|
|
mconfig = self.config[model_name]
|
|
else:
|
|
raise ValueError(
|
|
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
|
)
|
|
|
|
if "path" in mconfig:
|
|
path = Path(mconfig["path"])
|
|
if not path.is_absolute():
|
|
path = Path(Globals.root, path).resolve()
|
|
return path
|
|
elif "repo_id" in mconfig:
|
|
return mconfig["repo_id"]
|
|
else:
|
|
raise ValueError("Model config must specify either repo_id or path.")
|
|
|
|
def offload_model(self, model_name: str) -> None:
|
|
"""
|
|
Offload the indicated model to CPU. Will call
|
|
_make_cache_room() to free space if needed.
|
|
"""
|
|
if model_name not in self.models:
|
|
return
|
|
|
|
print(f">> Offloading {model_name} to CPU")
|
|
model = self.models[model_name]["model"]
|
|
self.models[model_name]["model"] = self._model_to_cpu(model)
|
|
|
|
gc.collect()
|
|
if self._has_cuda():
|
|
torch.cuda.empty_cache()
|
|
|
|
def scan_model(self, model_name, checkpoint):
|
|
"""
|
|
Apply picklescanner to the indicated checkpoint and issue a warning
|
|
and option to exit if an infected file is identified.
|
|
"""
|
|
# scan model
|
|
print(f">> Scanning Model: {model_name}")
|
|
scan_result = scan_file_path(checkpoint)
|
|
if scan_result.infected_files != 0:
|
|
if scan_result.infected_files == 1:
|
|
print(f"\n### Issues Found In Model: {scan_result.issues_count}")
|
|
print(
|
|
"### WARNING: The model you are trying to load seems to be infected."
|
|
)
|
|
print("### For your safety, InvokeAI will not load this model.")
|
|
print("### Please use checkpoints from trusted sources.")
|
|
print("### Exiting InvokeAI")
|
|
sys.exit()
|
|
else:
|
|
print(
|
|
"\n### WARNING: InvokeAI was unable to scan the model you are using."
|
|
)
|
|
model_safe_check_fail = ask_user(
|
|
"Do you want to to continue loading the model?", ["y", "n"]
|
|
)
|
|
if model_safe_check_fail.lower() != "y":
|
|
print("### Exiting InvokeAI")
|
|
sys.exit()
|
|
else:
|
|
print(">> Model scanned ok!")
|
|
|
|
def import_diffuser_model(
|
|
self,
|
|
repo_or_path: Union[str, Path],
|
|
model_name: str = None,
|
|
description: str = None,
|
|
vae: dict = None,
|
|
commit_to_conf: Path = None,
|
|
) -> bool:
|
|
"""
|
|
Attempts to install the indicated diffuser model and returns True if successful.
|
|
|
|
"repo_or_path" can be either a repo-id or a path-like object corresponding to the
|
|
top of a downloaded diffusers directory.
|
|
|
|
You can optionally provide a model name and/or description. If not provided,
|
|
then these will be derived from the repo name. If you provide a commit_to_conf
|
|
path to the configuration file, then the new entry will be committed to the
|
|
models.yaml file.
|
|
"""
|
|
model_name = model_name or Path(repo_or_path).stem
|
|
description = description or f"imported diffusers model {model_name}"
|
|
new_config = dict(
|
|
description=description,
|
|
vae=vae,
|
|
format="diffusers",
|
|
)
|
|
if isinstance(repo_or_path, Path) and repo_or_path.exists():
|
|
new_config.update(path=str(repo_or_path))
|
|
else:
|
|
new_config.update(repo_id=repo_or_path)
|
|
|
|
self.add_model(model_name, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
return True
|
|
|
|
def import_ckpt_model(
|
|
self,
|
|
weights: Union[str, Path],
|
|
config: Union[str, Path] = "configs/stable-diffusion/v1-inference.yaml",
|
|
vae: Union[str, Path] = None,
|
|
model_name: str = None,
|
|
model_description: str = None,
|
|
commit_to_conf: Path = None,
|
|
) -> bool:
|
|
"""
|
|
Attempts to install the indicated ckpt file and returns True if successful.
|
|
|
|
"weights" can be either a path-like object corresponding to a local .ckpt file
|
|
or a http/https URL pointing to a remote model.
|
|
|
|
"vae" is a Path or str object pointing to a ckpt or safetensors file to be used
|
|
as the VAE for this model.
|
|
|
|
"config" is the model config file to use with this ckpt file. It defaults to
|
|
v1-inference.yaml. If a URL is provided, the config will be downloaded.
|
|
|
|
You can optionally provide a model name and/or description. If not provided,
|
|
then these will be derived from the weight file name. If you provide a commit_to_conf
|
|
path to the configuration file, then the new entry will be committed to the
|
|
models.yaml file.
|
|
"""
|
|
weights_path = self._resolve_path(weights, "models/ldm/stable-diffusion-v1")
|
|
config_path = self._resolve_path(config, "configs/stable-diffusion")
|
|
|
|
if weights_path is None or not weights_path.exists():
|
|
return False
|
|
if config_path is None or not config_path.exists():
|
|
return False
|
|
|
|
model_name = model_name or Path(weights).stem
|
|
model_description = (
|
|
model_description or f"imported stable diffusion weights file {model_name}"
|
|
)
|
|
new_config = dict(
|
|
weights=str(weights_path),
|
|
config=str(config_path),
|
|
description=model_description,
|
|
format="ckpt",
|
|
width=512,
|
|
height=512,
|
|
)
|
|
if vae:
|
|
new_config["vae"] = vae
|
|
self.add_model(model_name, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
return True
|
|
|
|
def autoconvert_weights(
|
|
self,
|
|
conf_path: Path,
|
|
weights_directory: Path = None,
|
|
dest_directory: Path = None,
|
|
):
|
|
"""
|
|
Scan the indicated directory for .ckpt files, convert into diffuser models,
|
|
and import.
|
|
"""
|
|
weights_directory = weights_directory or global_autoscan_dir()
|
|
dest_directory = dest_directory or Path(
|
|
global_models_dir(), Globals.converted_ckpts_dir
|
|
)
|
|
|
|
print(">> Checking for unconverted .ckpt files in {weights_directory}")
|
|
ckpt_files = dict()
|
|
for root, dirs, files in os.walk(weights_directory):
|
|
for f in files:
|
|
if not f.endswith(".ckpt"):
|
|
continue
|
|
basename = Path(f).stem
|
|
dest = Path(dest_directory, basename)
|
|
if not dest.exists():
|
|
ckpt_files[Path(root, f)] = dest
|
|
|
|
if len(ckpt_files) == 0:
|
|
return
|
|
|
|
print(
|
|
f">> New .ckpt file(s) found in {weights_directory}. Optimizing and importing..."
|
|
)
|
|
for ckpt in ckpt_files:
|
|
self.convert_and_import(ckpt, ckpt_files[ckpt])
|
|
self.commit(conf_path)
|
|
|
|
def convert_and_import(
|
|
self,
|
|
ckpt_path: Path,
|
|
diffusers_path: Path,
|
|
model_name=None,
|
|
model_description=None,
|
|
vae=None,
|
|
original_config_file: Path = None,
|
|
commit_to_conf: Path = None,
|
|
) -> dict:
|
|
"""
|
|
Convert a legacy ckpt weights file to diffuser model and import
|
|
into models.yaml.
|
|
"""
|
|
new_config = None
|
|
|
|
from ldm.invoke.ckpt_to_diffuser import convert_ckpt_to_diffuser
|
|
|
|
if diffusers_path.exists():
|
|
print(
|
|
f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again."
|
|
)
|
|
return
|
|
|
|
model_name = model_name or diffusers_path.name
|
|
model_description = model_description or f"Optimized version of {model_name}"
|
|
print(f">> Optimizing {model_name} (30-60s)")
|
|
try:
|
|
# By passing the specified VAE too the conversion function, the autoencoder
|
|
# will be built into the model rather than tacked on afterward via the config file
|
|
vae_model = self._load_vae(vae) if vae else None
|
|
convert_ckpt_to_diffuser(
|
|
ckpt_path,
|
|
diffusers_path,
|
|
extract_ema=True,
|
|
original_config_file=original_config_file,
|
|
vae=vae_model,
|
|
)
|
|
print(
|
|
f" | Success. Optimized model is now located at {str(diffusers_path)}"
|
|
)
|
|
print(f" | Writing new config file entry for {model_name}")
|
|
new_config = dict(
|
|
path=str(diffusers_path),
|
|
description=model_description,
|
|
format="diffusers",
|
|
)
|
|
if model_name in self.config:
|
|
self.del_model(model_name)
|
|
self.add_model(model_name, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
print(">> Conversion succeeded")
|
|
except Exception as e:
|
|
print(f"** Conversion failed: {str(e)}")
|
|
print("** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)")
|
|
|
|
return new_config
|
|
|
|
def search_models(self, search_folder):
|
|
print(f">> Finding Models In: {search_folder}")
|
|
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
|
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
|
|
|
|
ckpt_files = [x for x in models_folder_ckpt if x.is_file()]
|
|
safetensor_files = [x for x in models_folder_safetensors if x.is_file()]
|
|
|
|
files = ckpt_files + safetensor_files
|
|
|
|
found_models = []
|
|
for file in files:
|
|
location = str(file.resolve()).replace("\\", "/")
|
|
if 'model.safetensors' not in location and 'diffusion_pytorch_model.safetensors' not in location:
|
|
found_models.append(
|
|
{"name": file.stem, "location": location}
|
|
)
|
|
|
|
return search_folder, found_models
|
|
|
|
def _choose_diffusers_vae(
|
|
self, model_name: str, vae: str = None
|
|
) -> Union[dict, str]:
|
|
# In the event that the original entry is using a custom ckpt VAE, we try to
|
|
# map that VAE onto a diffuser VAE using a hard-coded dictionary.
|
|
# I would prefer to do this differently: We load the ckpt model into memory, swap the
|
|
# VAE in memory, and then pass that to convert_ckpt_to_diffuser() so that the swapped
|
|
# VAE is built into the model. However, when I tried this I got obscure key errors.
|
|
if vae:
|
|
return vae
|
|
if model_name in self.config and (
|
|
vae_ckpt_path := self.model_info(model_name).get("vae", None)
|
|
):
|
|
vae_basename = Path(vae_ckpt_path).stem
|
|
diffusers_vae = None
|
|
if diffusers_vae := VAE_TO_REPO_ID.get(vae_basename, None):
|
|
print(
|
|
f">> {vae_basename} VAE corresponds to known {diffusers_vae} diffusers version"
|
|
)
|
|
vae = {"repo_id": diffusers_vae}
|
|
else:
|
|
print(
|
|
f'** Custom VAE "{vae_basename}" found, but corresponding diffusers model unknown'
|
|
)
|
|
print(
|
|
'** Using "stabilityai/sd-vae-ft-mse"; If this isn\'t right, please edit the model config'
|
|
)
|
|
vae = {"repo_id": "stabilityai/sd-vae-ft-mse"}
|
|
return vae
|
|
|
|
def _make_cache_room(self) -> None:
|
|
num_loaded_models = len(self.models)
|
|
if num_loaded_models >= self.max_loaded_models:
|
|
least_recent_model = self._pop_oldest_model()
|
|
print(
|
|
f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
|
|
)
|
|
if least_recent_model is not None:
|
|
del self.models[least_recent_model]
|
|
gc.collect()
|
|
|
|
def print_vram_usage(self) -> None:
|
|
if self._has_cuda:
|
|
print(
|
|
">> Current VRAM usage: ",
|
|
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
|
|
)
|
|
|
|
def commit(self, config_file_path: str) -> None:
|
|
"""
|
|
Write current configuration out to the indicated file.
|
|
"""
|
|
yaml_str = OmegaConf.to_yaml(self.config)
|
|
if not os.path.isabs(config_file_path):
|
|
config_file_path = os.path.normpath(
|
|
os.path.join(Globals.root, config_file_path)
|
|
)
|
|
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
|
|
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
|
outfile.write(self.preamble())
|
|
outfile.write(yaml_str)
|
|
os.replace(tmpfile, config_file_path)
|
|
|
|
def preamble(self) -> str:
|
|
"""
|
|
Returns the preamble for the config file.
|
|
"""
|
|
return textwrap.dedent(
|
|
"""\
|
|
# This file describes the alternative machine learning models
|
|
# available to InvokeAI script.
|
|
#
|
|
# To add a new model, follow the examples below. Each
|
|
# model requires a model config file, a weights file,
|
|
# and the width and height of the images it
|
|
# was trained on.
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def migrate_models(cls):
|
|
"""
|
|
Migrate the ~/invokeai/models directory from the legacy format used through 2.2.5
|
|
to the 2.3.0 "diffusers" version. This should be a one-time operation, called at
|
|
script startup time.
|
|
"""
|
|
# Three transformer models to check: bert, clip and safety checker
|
|
legacy_locations = [
|
|
Path(
|
|
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
|
|
),
|
|
Path("bert-base-uncased/models--bert-base-uncased"),
|
|
Path(
|
|
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
|
|
),
|
|
]
|
|
models_dir = Path(Globals.root, "models")
|
|
legacy_layout = False
|
|
for model in legacy_locations:
|
|
legacy_layout = legacy_layout or Path(models_dir, model).exists()
|
|
if not legacy_layout:
|
|
return
|
|
|
|
print(
|
|
"** Legacy version <= 2.2.5 model directory layout detected. Reorganizing."
|
|
)
|
|
print("** This is a quick one-time operation.")
|
|
|
|
# transformer files get moved into the hub directory
|
|
if cls._is_huggingface_hub_directory_present():
|
|
hub = global_cache_dir("hub")
|
|
else:
|
|
hub = models_dir / "hub"
|
|
|
|
os.makedirs(hub, exist_ok=True)
|
|
for model in legacy_locations:
|
|
source = models_dir / model
|
|
dest = hub / model.stem
|
|
print(f"** {source} => {dest}")
|
|
if source.exists():
|
|
if dest.exists():
|
|
rmtree(source)
|
|
else:
|
|
move(source, dest)
|
|
|
|
# anything else gets moved into the diffusers directory
|
|
if cls._is_huggingface_hub_directory_present():
|
|
diffusers = global_cache_dir("diffusers")
|
|
else:
|
|
diffusers = models_dir / "diffusers"
|
|
|
|
os.makedirs(diffusers, exist_ok=True)
|
|
for root, dirs, _ in os.walk(models_dir, topdown=False):
|
|
for dir in dirs:
|
|
full_path = Path(root, dir)
|
|
if full_path.is_relative_to(hub) or full_path.is_relative_to(diffusers):
|
|
continue
|
|
if Path(dir).match("models--*--*"):
|
|
dest = diffusers / dir
|
|
print(f"** {full_path} => {dest}")
|
|
if dest.exists():
|
|
rmtree(full_path)
|
|
else:
|
|
move(full_path, dest)
|
|
|
|
# now clean up by removing any empty directories
|
|
empty = [
|
|
root
|
|
for root, dirs, files, in os.walk(models_dir)
|
|
if not len(dirs) and not len(files)
|
|
]
|
|
for d in empty:
|
|
os.rmdir(d)
|
|
print("** Migration is done. Continuing...")
|
|
|
|
def _resolve_path(
|
|
self, source: Union[str, Path], dest_directory: str
|
|
) -> Optional[Path]:
|
|
resolved_path = None
|
|
if str(source).startswith(("http:", "https:", "ftp:")):
|
|
basename = os.path.basename(source)
|
|
if not os.path.isabs(dest_directory):
|
|
dest_directory = os.path.join(Globals.root, dest_directory)
|
|
dest = os.path.join(dest_directory, basename)
|
|
if download_with_progress_bar(str(source), Path(dest)):
|
|
resolved_path = Path(dest)
|
|
else:
|
|
if not os.path.isabs(source):
|
|
source = os.path.join(Globals.root, source)
|
|
resolved_path = Path(source)
|
|
return resolved_path
|
|
|
|
def _invalidate_cached_model(self, model_name: str) -> None:
|
|
self.offload_model(model_name)
|
|
if model_name in self.stack:
|
|
self.stack.remove(model_name)
|
|
self.models.pop(model_name, None)
|
|
|
|
def _model_to_cpu(self, model):
|
|
if self.device == "cpu":
|
|
return model
|
|
|
|
if isinstance(model, StableDiffusionGeneratorPipeline):
|
|
model.offload_all()
|
|
return model
|
|
|
|
model.cond_stage_model.device = "cpu"
|
|
model.to("cpu")
|
|
|
|
for submodel in ("first_stage_model", "cond_stage_model", "model"):
|
|
try:
|
|
getattr(model, submodel).to("cpu")
|
|
except AttributeError:
|
|
pass
|
|
return model
|
|
|
|
def _model_from_cpu(self, model):
|
|
if self.device == "cpu":
|
|
return model
|
|
|
|
if isinstance(model, StableDiffusionGeneratorPipeline):
|
|
model.ready()
|
|
return model
|
|
|
|
model.to(self.device)
|
|
model.cond_stage_model.device = self.device
|
|
|
|
for submodel in ("first_stage_model", "cond_stage_model", "model"):
|
|
try:
|
|
getattr(model, submodel).to(self.device)
|
|
except AttributeError:
|
|
pass
|
|
|
|
return model
|
|
|
|
def _pop_oldest_model(self):
|
|
"""
|
|
Remove the first element of the FIFO, which ought
|
|
to be the least recently accessed model. Do not
|
|
pop the last one, because it is in active use!
|
|
"""
|
|
return self.stack.pop(0)
|
|
|
|
def _push_newest_model(self, model_name: str) -> None:
|
|
"""
|
|
Maintain a simple FIFO. First element is always the
|
|
least recent, and last element is always the most recent.
|
|
"""
|
|
with contextlib.suppress(ValueError):
|
|
self.stack.remove(model_name)
|
|
self.stack.append(model_name)
|
|
|
|
def _has_cuda(self) -> bool:
|
|
return self.device.type == "cuda"
|
|
|
|
def _diffuser_sha256(
|
|
self, name_or_path: Union[str, Path], chunksize=4096
|
|
) -> Union[str, bytes]:
|
|
path = None
|
|
if isinstance(name_or_path, Path):
|
|
path = name_or_path
|
|
else:
|
|
owner, repo = name_or_path.split("/")
|
|
path = Path(global_cache_dir("diffusers") / f"models--{owner}--{repo}")
|
|
if not path.exists():
|
|
return None
|
|
hashpath = path / "checksum.sha256"
|
|
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
print(" | Calculating sha256 hash of model files")
|
|
tic = time.time()
|
|
sha = hashlib.sha256()
|
|
count = 0
|
|
for root, dirs, files in os.walk(path, followlinks=False):
|
|
for name in files:
|
|
count += 1
|
|
with open(os.path.join(root, name), "rb") as f:
|
|
while chunk := f.read(chunksize):
|
|
sha.update(chunk)
|
|
hash = sha.hexdigest()
|
|
toc = time.time()
|
|
print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
|
|
with open(hashpath, "w") as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def _cached_sha256(self, path, data) -> Union[str, bytes]:
|
|
dirname = os.path.dirname(path)
|
|
basename = os.path.basename(path)
|
|
base, _ = os.path.splitext(basename)
|
|
hashpath = os.path.join(dirname, base + ".sha256")
|
|
|
|
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(
|
|
hashpath
|
|
):
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
|
|
print(" | Calculating sha256 hash of weights file")
|
|
tic = time.time()
|
|
sha = hashlib.sha256()
|
|
sha.update(data)
|
|
hash = sha.hexdigest()
|
|
toc = time.time()
|
|
print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic))
|
|
|
|
with open(hashpath, "w") as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def _load_vae(self, vae_config) -> AutoencoderKL:
|
|
vae_args = {}
|
|
name_or_path = self.model_name_or_path(vae_config)
|
|
using_fp16 = self.precision == "float16"
|
|
|
|
vae_args.update(
|
|
cache_dir=global_cache_dir("diffusers"),
|
|
local_files_only=not Globals.internet_available,
|
|
)
|
|
|
|
print(f" | Loading diffusers VAE from {name_or_path}")
|
|
if using_fp16:
|
|
vae_args.update(torch_dtype=torch.float16)
|
|
fp_args_list = [{"revision": "fp16"}, {}]
|
|
else:
|
|
print(" | Using more accurate float32 precision")
|
|
fp_args_list = [{}]
|
|
|
|
vae = None
|
|
deferred_error = None
|
|
|
|
# A VAE may be in a subfolder of a model's repository.
|
|
if "subfolder" in vae_config:
|
|
vae_args["subfolder"] = vae_config["subfolder"]
|
|
|
|
for fp_args in fp_args_list:
|
|
# At some point we might need to be able to use different classes here? But for now I think
|
|
# all Stable Diffusion VAE are AutoencoderKL.
|
|
try:
|
|
vae = AutoencoderKL.from_pretrained(name_or_path, **vae_args, **fp_args)
|
|
except OSError as e:
|
|
if str(e).startswith("fp16 is not a valid"):
|
|
pass
|
|
else:
|
|
deferred_error = e
|
|
if vae:
|
|
break
|
|
|
|
if not vae and deferred_error:
|
|
print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}")
|
|
|
|
return vae
|
|
|
|
@staticmethod
|
|
def _delete_model_from_cache(repo_id):
|
|
cache_info = scan_cache_dir(global_cache_dir("diffusers"))
|
|
|
|
# I'm sure there is a way to do this with comprehensions
|
|
# but the code quickly became incomprehensible!
|
|
hashes_to_delete = set()
|
|
for repo in cache_info.repos:
|
|
if repo.repo_id == repo_id:
|
|
for revision in repo.revisions:
|
|
hashes_to_delete.add(revision.commit_hash)
|
|
strategy = cache_info.delete_revisions(*hashes_to_delete)
|
|
print(
|
|
f"** deletion of this model is expected to free {strategy.expected_freed_size_str}"
|
|
)
|
|
strategy.execute()
|
|
|
|
@staticmethod
|
|
def _abs_path(path: str | Path) -> Path:
|
|
if path is None or Path(path).is_absolute():
|
|
return path
|
|
return Path(Globals.root, path).resolve()
|
|
|
|
@staticmethod
|
|
def _is_huggingface_hub_directory_present() -> bool:
|
|
return (
|
|
os.getenv("HF_HOME") is not None or os.getenv("XDG_CACHE_HOME") is not None
|
|
)
|