InvokeAI/scripts/preload_models.py
Lincoln Stein 2b1aaf4ee7 rename all modules from ldm.dream to ldm.invoke
- scripts and documentation updated to match
- ran preflight checks on both web and CLI and seems to be working
2022-10-08 11:37:23 -04:00

110 lines
3.8 KiB
Python

#!/usr/bin/env python3
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
from transformers import CLIPTokenizer, CLIPTextModel
import clip
from transformers import BertTokenizerFast
import sys
import transformers
import os
import warnings
import urllib.request
transformers.logging.set_verbosity_error()
# this will preload the Bert tokenizer fles
print('preloading bert tokenizer...', end='')
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
print('...success')
# this will download requirements for Kornia
print('preloading Kornia requirements...', end='')
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
import kornia
print('...success')
version = 'openai/clip-vit-large-patch14'
print('preloading CLIP model...',end='')
sys.stdout.flush()
tokenizer = CLIPTokenizer.from_pretrained(version)
transformer = CLIPTextModel.from_pretrained(version)
print('...success')
# In the event that the user has installed GFPGAN and also elected to use
# RealESRGAN, this will attempt to download the model needed by RealESRGANer
gfpgan = False
try:
from realesrgan import RealESRGANer
gfpgan = True
except ModuleNotFoundError:
pass
if gfpgan:
print('Loading models from RealESRGAN and facexlib...',end='')
try:
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
RealESRGANer(
scale=4,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
)
FaceRestoreHelper(1, det_model='retinaface_resnet50')
print('...success')
except Exception:
import traceback
print('Error loading ESRGAN:')
print(traceback.format_exc())
print('Loading models from GFPGAN')
import urllib.request
for model in (
[
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
'src/gfpgan/experiments/pretrained_models/GFPGANv1.4.pth'
],
[
'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth',
'./gfpgan/weights/detection_Resnet50_Final.pth'
],
[
'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth',
'./gfpgan/weights/parsing_parsenet.pth'
],
):
model_url,model_dest = model
try:
if not os.path.exists(model_dest):
print(f'Downloading gfpgan model file {model_url}...',end='')
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
urllib.request.urlretrieve(model_url,model_dest)
print('...success')
except Exception:
import traceback
print('Error loading GFPGAN:')
print(traceback.format_exc())
print('preloading CodeFormer model file...',end='')
try:
import urllib.request
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
model_dest = 'ldm/invoke/restoration/codeformer/weights/codeformer.pth'
if not os.path.exists(model_dest):
print('Downloading codeformer model file...')
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
urllib.request.urlretrieve(model_url,model_dest)
except Exception:
import traceback
print('Error loading CodeFormer:')
print(traceback.format_exc())
print('...success')