mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
977 lines
36 KiB
Python
977 lines
36 KiB
Python
#!/usr/bin/env python
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
# Before running stable-diffusion on an internet-isolated machine,
|
|
# run this script from one with internet connectivity. The
|
|
# two machines must share a common .cache directory.
|
|
|
|
"""
|
|
This is the npyscreen frontend to the model installation application.
|
|
The work is actually done in backend code in model_install_backend.py.
|
|
"""
|
|
|
|
import argparse
|
|
import curses
|
|
import os
|
|
import sys
|
|
import textwrap
|
|
from argparse import Namespace
|
|
from multiprocessing import Process
|
|
from multiprocessing.connection import Connection, Pipe
|
|
from pathlib import Path
|
|
from shutil import get_terminal_size
|
|
from typing import List
|
|
|
|
import logging
|
|
import npyscreen
|
|
import torch
|
|
from npyscreen import widget
|
|
from omegaconf import OmegaConf
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
|
|
from invokeai.backend.install.model_install_backend import (
|
|
Dataset_path,
|
|
default_config_file,
|
|
default_dataset,
|
|
install_requested_models,
|
|
recommended_datasets,
|
|
ModelInstallList,
|
|
UserSelections,
|
|
)
|
|
from invokeai.backend import ModelManager
|
|
from invokeai.backend.util import choose_precision, choose_torch_device
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
from invokeai.frontend.install.widgets import (
|
|
CenteredTitleText,
|
|
MultiSelectColumns,
|
|
SingleSelectColumns,
|
|
TextBox,
|
|
BufferBox,
|
|
FileBox,
|
|
set_min_terminal_size,
|
|
select_stable_diffusion_config_file,
|
|
CyclingForm,
|
|
MIN_COLS,
|
|
MIN_LINES,
|
|
)
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
|
|
config = InvokeAIAppConfig.get_config()
|
|
|
|
# build a table mapping all non-printable characters to None
|
|
# for stripping control characters
|
|
# from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python
|
|
NOPRINT_TRANS_TABLE = {
|
|
i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
|
|
}
|
|
|
|
def make_printable(s:str)->str:
|
|
'''Replace non-printable characters in a string'''
|
|
return s.translate(NOPRINT_TRANS_TABLE)
|
|
|
|
class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
|
# for responsive resizing - disabled
|
|
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
|
|
|
|
# for persistence
|
|
current_tab = 0
|
|
|
|
def __init__(self, parentApp, name, multipage=False, *args, **keywords):
|
|
self.multipage = multipage
|
|
self.subprocess = None
|
|
super().__init__(parentApp=parentApp, name=name, *args, **keywords)
|
|
|
|
def create(self):
|
|
self.keypress_timeout = 10
|
|
self.counter = 0
|
|
self.subprocess_connection = None
|
|
|
|
if not config.model_conf_path.exists():
|
|
with open(config.model_conf_path,'w') as file:
|
|
print('# InvokeAI model configuration file',file=file)
|
|
model_manager = ModelManager(config.model_conf_path)
|
|
|
|
self.starter_models = OmegaConf.load(Dataset_path)['diffusers']
|
|
self.installed_diffusers_models = self.list_additional_diffusers_models(
|
|
model_manager,
|
|
self.starter_models,
|
|
)
|
|
self.installed_cn_models = model_manager.list_controlnet_models()
|
|
self.installed_lora_models = model_manager.list_lora_models()
|
|
self.installed_ti_models = model_manager.list_ti_models()
|
|
|
|
try:
|
|
self.existing_models = OmegaConf.load(default_config_file())
|
|
except:
|
|
self.existing_models = dict()
|
|
|
|
self.starter_model_list = list(self.starter_models.keys())
|
|
self.installed_models = dict()
|
|
|
|
window_width, window_height = get_terminal_size()
|
|
|
|
self.nextrely -= 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields,",
|
|
editable=False,
|
|
color="CAUTION",
|
|
)
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Use cursor arrows to make a selection, and space to toggle checkboxes.",
|
|
editable=False,
|
|
color="CAUTION",
|
|
)
|
|
self.nextrely += 1
|
|
self.tabs = self.add_widget_intelligent(
|
|
SingleSelectColumns,
|
|
values=[
|
|
'STARTER MODELS',
|
|
'MORE DIFFUSION MODELS',
|
|
'CONTROLNET MODELS',
|
|
'LORA/LYCORIS MODELS',
|
|
'TEXTUAL INVERSION MODELS',
|
|
],
|
|
value=[self.current_tab],
|
|
columns = 5,
|
|
max_height = 2,
|
|
relx=8,
|
|
scroll_exit = True,
|
|
)
|
|
self.tabs.on_changed = self._toggle_tables
|
|
|
|
top_of_table = self.nextrely
|
|
self.starter_diffusers_models = self.add_starter_diffusers()
|
|
bottom_of_table = self.nextrely
|
|
|
|
self.nextrely = top_of_table
|
|
self.diffusers_models = self.add_diffusers_widgets(
|
|
predefined_models=self.installed_diffusers_models,
|
|
model_type='Diffusers',
|
|
window_width=window_width,
|
|
)
|
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
|
|
|
self.nextrely = top_of_table
|
|
self.controlnet_models = self.add_model_widgets(
|
|
predefined_models=self.installed_cn_models,
|
|
model_type='ControlNet',
|
|
window_width=window_width,
|
|
)
|
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
|
|
|
self.nextrely = top_of_table
|
|
self.lora_models = self.add_model_widgets(
|
|
predefined_models=self.installed_lora_models,
|
|
model_type="LoRA/LyCORIS",
|
|
window_width=window_width,
|
|
)
|
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
|
|
|
self.nextrely = top_of_table
|
|
self.ti_models = self.add_model_widgets(
|
|
predefined_models=self.installed_ti_models,
|
|
model_type="Textual Inversion Embeddings",
|
|
window_width=window_width,
|
|
)
|
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
|
|
|
self.nextrely = bottom_of_table+1
|
|
|
|
self.monitor = self.add_widget_intelligent(
|
|
BufferBox,
|
|
name='Log Messages',
|
|
editable=False,
|
|
max_height = 20,
|
|
)
|
|
|
|
self.nextrely += 1
|
|
done_label = "INSTALL/REMOVE NOW"
|
|
back_label = "BACK"
|
|
button_length = len(done_label)
|
|
button_offset = 0
|
|
if self.multipage:
|
|
button_length += len(back_label) + 1
|
|
button_offset += len(back_label) + 1
|
|
self.back_button = self.add_widget_intelligent(
|
|
npyscreen.ButtonPress,
|
|
name=back_label,
|
|
relx=(window_width - button_length) // 2,
|
|
rely=-3,
|
|
when_pressed_function=self.on_back,
|
|
)
|
|
self.ok_button = self.add_widget_intelligent(
|
|
npyscreen.ButtonPress, # OffsetButtonPress,
|
|
name=done_label,
|
|
relx=button_offset + 1 + (window_width - button_length) // 2,
|
|
rely=-3,
|
|
when_pressed_function=self.on_execute
|
|
)
|
|
|
|
label = "INSTALL AND EXIT"
|
|
self.done = self.add_widget_intelligent(
|
|
npyscreen.ButtonPress,
|
|
name=label,
|
|
rely=-3,
|
|
relx=window_width-len(label)-15,
|
|
when_pressed_function=self.on_done,
|
|
)
|
|
|
|
# This restores the selected page on return from an installation
|
|
for i in range(1,self.current_tab+1):
|
|
self.tabs.h_cursor_line_down(1)
|
|
self._toggle_tables([self.current_tab])
|
|
|
|
############# diffusers tab ##########
|
|
def add_starter_diffusers(self)->dict[str, npyscreen.widget]:
|
|
'''Add widgets responsible for selecting diffusers models'''
|
|
widgets = dict()
|
|
|
|
starter_model_labels = self._get_starter_model_labels()
|
|
recommended_models = [
|
|
x
|
|
for x in self.starter_model_list
|
|
if self.starter_models[x].get("recommended", False)
|
|
]
|
|
self.installed_models = sorted(
|
|
[x for x in list(self.starter_models.keys()) if x in self.existing_models]
|
|
)
|
|
|
|
widgets.update(
|
|
label1 = self.add_widget_intelligent(
|
|
CenteredTitleText,
|
|
name="Select from a starter set of Stable Diffusion models from HuggingFace.",
|
|
editable=False,
|
|
labelColor="CAUTION",
|
|
)
|
|
)
|
|
|
|
self.nextrely -= 1
|
|
# if user has already installed some initial models, then don't patronize them
|
|
# by showing more recommendations
|
|
show_recommended = not self.existing_models
|
|
widgets.update(
|
|
models_selected = self.add_widget_intelligent(
|
|
MultiSelectColumns,
|
|
columns=1,
|
|
name="Install Starter Models",
|
|
values=starter_model_labels,
|
|
value=[
|
|
self.starter_model_list.index(x)
|
|
for x in self.starter_model_list
|
|
if (show_recommended and x in recommended_models)\
|
|
or (x in self.existing_models)
|
|
],
|
|
max_height=len(starter_model_labels) + 1,
|
|
relx=4,
|
|
scroll_exit=True,
|
|
)
|
|
)
|
|
|
|
widgets.update(
|
|
purge_deleted = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Purge unchecked diffusers models from disk",
|
|
value=False,
|
|
scroll_exit=True,
|
|
relx=4,
|
|
)
|
|
)
|
|
widgets['purge_deleted'].when_value_edited = lambda: self.sync_purge_buttons(widgets['purge_deleted'])
|
|
|
|
self.nextrely += 1
|
|
return widgets
|
|
|
|
############# Add a set of model install widgets ########
|
|
def add_model_widgets(self,
|
|
predefined_models: dict[str,bool],
|
|
model_type: str,
|
|
window_width: int=120,
|
|
install_prompt: str=None,
|
|
)->dict[str,npyscreen.widget]:
|
|
'''Generic code to create model selection widgets'''
|
|
widgets = dict()
|
|
model_list = sorted(predefined_models.keys())
|
|
if len(model_list) > 0:
|
|
max_width = max([len(x) for x in model_list])
|
|
columns = window_width // (max_width+6) # 6 characters for "[x] " and padding
|
|
columns = min(len(model_list),columns) or 1
|
|
prompt = install_prompt or f"Select the desired {model_type} models to install. Unchecked models will be purged from disk."
|
|
|
|
widgets.update(
|
|
label1 = self.add_widget_intelligent(
|
|
CenteredTitleText,
|
|
name=prompt,
|
|
editable=False,
|
|
labelColor="CAUTION",
|
|
)
|
|
)
|
|
|
|
widgets.update(
|
|
models_selected = self.add_widget_intelligent(
|
|
MultiSelectColumns,
|
|
columns=columns,
|
|
name=f"Install {model_type} Models",
|
|
values=model_list,
|
|
value=[
|
|
model_list.index(x)
|
|
for x in model_list
|
|
if predefined_models[x]
|
|
],
|
|
max_height=len(model_list)//columns + 1,
|
|
relx=4,
|
|
scroll_exit=True,
|
|
)
|
|
)
|
|
|
|
self.nextrely += 1
|
|
widgets.update(
|
|
label2 = self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="Additional URLs or HuggingFace repo_ids to install (Space separated. Use shift-control-V to paste):",
|
|
relx=4,
|
|
color='CONTROL',
|
|
editable=False,
|
|
scroll_exit=True
|
|
)
|
|
)
|
|
|
|
self.nextrely -= 1
|
|
widgets.update(
|
|
download_ids = self.add_widget_intelligent(
|
|
TextBox,
|
|
max_height=4,
|
|
scroll_exit=True,
|
|
editable=True,
|
|
relx=4
|
|
)
|
|
)
|
|
return widgets
|
|
|
|
### Tab for arbitrary diffusers widgets ###
|
|
def add_diffusers_widgets(self,
|
|
predefined_models: dict[str,bool],
|
|
model_type: str='Diffusers',
|
|
window_width: int=120,
|
|
)->dict[str,npyscreen.widget]:
|
|
'''Similar to add_model_widgets() but adds some additional widgets at the bottom
|
|
to support the autoload directory'''
|
|
widgets = self.add_model_widgets(
|
|
predefined_models,
|
|
'Diffusers',
|
|
window_width,
|
|
install_prompt="Additional diffusers models already installed. Uncheck to purge from disk.",
|
|
)
|
|
|
|
self.nextrely += 2
|
|
widgets.update(
|
|
purge_deleted = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Purge unchecked diffusers models from disk",
|
|
value=False,
|
|
scroll_exit=True,
|
|
relx=4,
|
|
)
|
|
)
|
|
label = "Directory to scan for models to automatically import (<tab> autocompletes):"
|
|
self.nextrely += 2
|
|
widgets.update(
|
|
autoload_directory = self.add_widget_intelligent(
|
|
# npyscreen.TitleFilename,
|
|
FileBox,
|
|
max_height=3,
|
|
name=label,
|
|
select_dir=True,
|
|
must_exist=True,
|
|
use_two_lines=False,
|
|
labelColor="DANGER",
|
|
begin_entry_at=len(label)+1,
|
|
scroll_exit=True,
|
|
)
|
|
)
|
|
widgets.update(
|
|
autoscan_on_startup = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Scan and import from this directory each time InvokeAI starts",
|
|
value=False,
|
|
relx=4,
|
|
scroll_exit=True,
|
|
)
|
|
)
|
|
widgets['purge_deleted'].when_value_edited = lambda: self.sync_purge_buttons(widgets['purge_deleted'])
|
|
return widgets
|
|
|
|
def sync_purge_buttons(self,checkbox):
|
|
value = checkbox.value
|
|
self.starter_diffusers_models['purge_deleted'].value = value
|
|
self.diffusers_models['purge_deleted'].value = value
|
|
|
|
def resize(self):
|
|
super().resize()
|
|
if (s := self.starter_diffusers_models.get("models_selected")):
|
|
s.values = self._get_starter_model_labels()
|
|
|
|
def _toggle_tables(self, value=None):
|
|
selected_tab = value[0]
|
|
widgets = [
|
|
self.starter_diffusers_models,
|
|
self.diffusers_models,
|
|
self.controlnet_models,
|
|
self.lora_models,
|
|
self.ti_models,
|
|
]
|
|
|
|
for group in widgets:
|
|
for k,v in group.items():
|
|
v.hidden = True
|
|
v.editable = False
|
|
for k,v in widgets[selected_tab].items():
|
|
v.hidden = False
|
|
if not isinstance(v,(npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)):
|
|
v.editable = True
|
|
self.__class__.current_tab = selected_tab # for persistence
|
|
self.display()
|
|
|
|
def _get_starter_model_labels(self) -> List[str]:
|
|
window_width, window_height = get_terminal_size()
|
|
label_width = 25
|
|
checkbox_width = 4
|
|
spacing_width = 2
|
|
description_width = window_width - label_width - checkbox_width - spacing_width
|
|
im = self.starter_models
|
|
names = self.starter_model_list
|
|
descriptions = [
|
|
im[x].description[0 : description_width - 3] + "..."
|
|
if len(im[x].description) > description_width
|
|
else im[x].description
|
|
for x in names
|
|
]
|
|
return [
|
|
f"%-{label_width}s %s" % (names[x], descriptions[x])
|
|
for x in range(0, len(names))
|
|
]
|
|
|
|
|
|
def _get_columns(self) -> int:
|
|
window_width, window_height = get_terminal_size()
|
|
cols = (
|
|
4
|
|
if window_width > 240
|
|
else 3
|
|
if window_width > 160
|
|
else 2
|
|
if window_width > 80
|
|
else 1
|
|
)
|
|
return min(cols, len(self.installed_models))
|
|
|
|
def on_execute(self):
|
|
self.monitor.entry_widget.buffer(['Processing...'],scroll_end=True)
|
|
self.marshall_arguments()
|
|
app = self.parentApp
|
|
self.ok_button.hidden = True
|
|
self.display()
|
|
|
|
# for communication with the subprocess
|
|
parent_conn, child_conn = Pipe()
|
|
p = Process(
|
|
target = process_and_execute,
|
|
kwargs=dict(
|
|
opt = app.program_opts,
|
|
selections = app.user_selections,
|
|
conn_out = child_conn,
|
|
)
|
|
)
|
|
p.start()
|
|
child_conn.close()
|
|
self.subprocess_connection = parent_conn
|
|
self.subprocess = p
|
|
app.user_selections = UserSelections()
|
|
# process_and_execute(app.opt, app.user_selections)
|
|
|
|
def on_back(self):
|
|
self.parentApp.switchFormPrevious()
|
|
self.editing = False
|
|
|
|
def on_cancel(self):
|
|
self.parentApp.setNextForm(None)
|
|
self.parentApp.user_cancelled = True
|
|
self.editing = False
|
|
|
|
def on_done(self):
|
|
self.marshall_arguments()
|
|
self.parentApp.setNextForm(None)
|
|
self.parentApp.user_cancelled = False
|
|
self.editing = False
|
|
|
|
########## This routine monitors the child process that is performing model installation and removal #####
|
|
def while_waiting(self):
|
|
'''Called during idle periods. Main task is to update the Log Messages box with messages
|
|
from the child process that does the actual installation/removal'''
|
|
c = self.subprocess_connection
|
|
if not c:
|
|
return
|
|
|
|
monitor_widget = self.monitor.entry_widget
|
|
while c.poll():
|
|
try:
|
|
data = c.recv_bytes().decode('utf-8')
|
|
data.strip('\n')
|
|
|
|
# processing child is requesting user input to select the
|
|
# right configuration file
|
|
if data.startswith('*need v2 config'):
|
|
_,model_path,*_ = data.split(":",2)
|
|
self._return_v2_config(model_path)
|
|
|
|
# processing child is done
|
|
elif data=='*done*':
|
|
self._close_subprocess_and_regenerate_form()
|
|
break
|
|
|
|
# update the log message box
|
|
else:
|
|
data=make_printable(data)
|
|
data=data.replace('[A','')
|
|
monitor_widget.buffer(
|
|
textwrap.wrap(data,
|
|
width=monitor_widget.width,
|
|
subsequent_indent=' ',
|
|
),
|
|
scroll_end=True
|
|
)
|
|
self.display()
|
|
except (EOFError,OSError):
|
|
self.subprocess_connection = None
|
|
|
|
def _return_v2_config(self,model_path: str):
|
|
c = self.subprocess_connection
|
|
model_name = Path(model_path).name
|
|
message = select_stable_diffusion_config_file(model_name=model_name)
|
|
c.send_bytes(message.encode('utf-8'))
|
|
|
|
def _close_subprocess_and_regenerate_form(self):
|
|
app = self.parentApp
|
|
self.subprocess_connection.close()
|
|
self.subprocess_connection = None
|
|
self.monitor.entry_widget.buffer(['** Action Complete **'])
|
|
self.display()
|
|
# rebuild the form, saving log messages
|
|
saved_messages = self.monitor.entry_widget.values
|
|
multipage = self.multipage
|
|
app.main_form = app.addForm(
|
|
"MAIN", addModelsForm, name="Install Stable Diffusion Models", multipage=multipage,
|
|
)
|
|
app.switchForm("MAIN")
|
|
app.main_form.monitor.entry_widget.values = saved_messages
|
|
app.main_form.monitor.entry_widget.buffer([''],scroll_end=True)
|
|
|
|
###############################################################
|
|
|
|
def list_additional_diffusers_models(self,
|
|
manager: ModelManager,
|
|
starters:dict
|
|
)->dict[str,bool]:
|
|
'''Return a dict of all the currently installed models that are not on the starter list'''
|
|
model_info = manager.list_models()
|
|
additional_models = {
|
|
x:True for x in model_info \
|
|
if model_info[x]['format']=='diffusers' \
|
|
and x not in starters
|
|
}
|
|
return additional_models
|
|
|
|
def marshall_arguments(self):
|
|
"""
|
|
Assemble arguments and store as attributes of the application:
|
|
.starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml
|
|
True => Install
|
|
False => Remove
|
|
.scan_directory: Path to a directory of models to scan and import
|
|
.autoscan_on_startup: True if invokeai should scan and import at startup time
|
|
.import_model_paths: list of URLs, repo_ids and file paths to import
|
|
"""
|
|
# we're using a global here rather than storing the result in the parentapp
|
|
# due to some bug in npyscreen that is causing attributes to be lost
|
|
selections = self.parentApp.user_selections
|
|
|
|
# Starter models to install/remove
|
|
starter_models = dict(
|
|
map(
|
|
lambda x: (self.starter_model_list[x], True),
|
|
self.starter_diffusers_models['models_selected'].value,
|
|
)
|
|
)
|
|
selections.purge_deleted_models = self.starter_diffusers_models['purge_deleted'].value or \
|
|
self.diffusers_models['purge_deleted'].value
|
|
|
|
selections.install_models = [x for x in starter_models if x not in self.existing_models]
|
|
selections.remove_models = [x for x in self.starter_model_list if x in self.existing_models and x not in starter_models]
|
|
|
|
# "More" models
|
|
selections.import_model_paths = self.diffusers_models['download_ids'].value.split()
|
|
if diffusers_selected := self.diffusers_models.get('models_selected'):
|
|
selections.remove_models.extend([x
|
|
for x in diffusers_selected.values
|
|
if self.installed_diffusers_models[x]
|
|
and diffusers_selected.values.index(x) not in diffusers_selected.value
|
|
]
|
|
)
|
|
|
|
# TODO: REFACTOR THIS REPETITIVE CODE
|
|
if cn_models_selected := self.controlnet_models.get('models_selected'):
|
|
selections.install_cn_models = [cn_models_selected.values[x]
|
|
for x in cn_models_selected.value
|
|
if not self.installed_cn_models[cn_models_selected.values[x]]
|
|
]
|
|
selections.remove_cn_models = [x
|
|
for x in cn_models_selected.values
|
|
if self.installed_cn_models[x]
|
|
and cn_models_selected.values.index(x) not in cn_models_selected.value
|
|
]
|
|
if (additional_cns := self.controlnet_models['download_ids'].value.split()):
|
|
valid_cns = [x for x in additional_cns if '/' in x]
|
|
selections.install_cn_models.extend(valid_cns)
|
|
|
|
# same thing, for LoRAs
|
|
if loras_selected := self.lora_models.get('models_selected'):
|
|
selections.install_lora_models = [loras_selected.values[x]
|
|
for x in loras_selected.value
|
|
if not self.installed_lora_models[loras_selected.values[x]]
|
|
]
|
|
selections.remove_lora_models = [x
|
|
for x in loras_selected.values
|
|
if self.installed_lora_models[x]
|
|
and loras_selected.values.index(x) not in loras_selected.value
|
|
]
|
|
if (additional_loras := self.lora_models['download_ids'].value.split()):
|
|
selections.install_lora_models.extend(additional_loras)
|
|
|
|
# same thing, for TIs
|
|
# TODO: refactor
|
|
if tis_selected := self.ti_models.get('models_selected'):
|
|
selections.install_ti_models = [tis_selected.values[x]
|
|
for x in tis_selected.value
|
|
if not self.installed_ti_models[tis_selected.values[x]]
|
|
]
|
|
selections.remove_ti_models = [x
|
|
for x in tis_selected.values
|
|
if self.installed_ti_models[x]
|
|
and tis_selected.values.index(x) not in tis_selected.value
|
|
]
|
|
|
|
if (additional_tis := self.ti_models['download_ids'].value.split()):
|
|
selections.install_ti_models.extend(additional_tis)
|
|
|
|
# load directory and whether to scan on startup
|
|
selections.scan_directory = self.diffusers_models['autoload_directory'].value
|
|
selections.autoscan_on_startup = self.diffusers_models['autoscan_on_startup'].value
|
|
|
|
|
|
class AddModelApplication(npyscreen.NPSAppManaged):
|
|
def __init__(self,opt):
|
|
super().__init__()
|
|
self.program_opts = opt
|
|
self.user_cancelled = False
|
|
self.user_selections = UserSelections()
|
|
|
|
def onStart(self):
|
|
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
|
self.main_form = self.addForm(
|
|
"MAIN", addModelsForm, name="Install Stable Diffusion Models", cycle_widgets=True,
|
|
)
|
|
|
|
class StderrToMessage():
|
|
def __init__(self, connection: Connection):
|
|
self.connection = connection
|
|
|
|
def write(self, data:str):
|
|
self.connection.send_bytes(data.encode('utf-8'))
|
|
|
|
def flush(self):
|
|
pass
|
|
|
|
# --------------------------------------------------------
|
|
def ask_user_for_config_file(model_path: Path,
|
|
tui_conn: Connection=None
|
|
)->Path:
|
|
if tui_conn:
|
|
logger.debug('Waiting for user response...')
|
|
return _ask_user_for_cf_tui(model_path, tui_conn)
|
|
else:
|
|
return _ask_user_for_cf_cmdline(model_path)
|
|
|
|
def _ask_user_for_cf_cmdline(model_path):
|
|
choices = [
|
|
config.legacy_conf_path / x
|
|
for x in ['v2-inference.yaml','v2-inference-v.yaml']
|
|
]
|
|
choices.extend([None])
|
|
print(
|
|
f"""
|
|
Please select the type of the V2 checkpoint named {model_path.name}:
|
|
[1] A Stable Diffusion v2.x base model (512 pixels; there should be no 'parameterization:' line in its yaml file)
|
|
[2] A Stable Diffusion v2.x v-predictive model (768 pixels; look for a 'parameterization: "v"' line in its yaml file)
|
|
[3] Skip this model and come back later.
|
|
"""
|
|
)
|
|
choice = None
|
|
ok = False
|
|
while not ok:
|
|
try:
|
|
choice = input('select> ').strip()
|
|
choice = choices[int(choice)-1]
|
|
ok = True
|
|
except (ValueError, IndexError):
|
|
print(f'{choice} is not a valid choice')
|
|
except EOFError:
|
|
return
|
|
return choice
|
|
|
|
def _ask_user_for_cf_tui(model_path: Path, tui_conn: Connection)->Path:
|
|
try:
|
|
tui_conn.send_bytes(f'*need v2 config for:{model_path}'.encode('utf-8'))
|
|
# note that we don't do any status checking here
|
|
response = tui_conn.recv_bytes().decode('utf-8')
|
|
if response is None:
|
|
return None
|
|
elif response == 'epsilon':
|
|
return config.legacy_conf_path / 'v2-inference.yaml'
|
|
elif response == 'v':
|
|
return config.legacy_conf_path / 'v2-inference-v.yaml'
|
|
elif response == 'abort':
|
|
logger.info('Conversion aborted')
|
|
return None
|
|
else:
|
|
return Path(response)
|
|
except:
|
|
return None
|
|
|
|
# --------------------------------------------------------
|
|
def process_and_execute(opt: Namespace,
|
|
selections: UserSelections,
|
|
conn_out: Connection=None,
|
|
):
|
|
# set up so that stderr is sent to conn_out
|
|
if conn_out:
|
|
translator = StderrToMessage(conn_out)
|
|
sys.stderr = translator
|
|
sys.stdout = translator
|
|
logger = InvokeAILogger.getLogger()
|
|
logger.handlers.clear()
|
|
logger.addHandler(logging.StreamHandler(translator))
|
|
|
|
models_to_install = selections.install_models
|
|
models_to_remove = selections.remove_models
|
|
directory_to_scan = selections.scan_directory
|
|
scan_at_startup = selections.autoscan_on_startup
|
|
potential_models_to_install = selections.import_model_paths
|
|
|
|
install_requested_models(
|
|
diffusers = ModelInstallList(models_to_install, models_to_remove),
|
|
controlnet = ModelInstallList(selections.install_cn_models, selections.remove_cn_models),
|
|
lora = ModelInstallList(selections.install_lora_models, selections.remove_lora_models),
|
|
ti = ModelInstallList(selections.install_ti_models, selections.remove_ti_models),
|
|
scan_directory=Path(directory_to_scan) if directory_to_scan else None,
|
|
external_models=potential_models_to_install,
|
|
scan_at_startup=scan_at_startup,
|
|
precision="float32"
|
|
if opt.full_precision
|
|
else choose_precision(torch.device(choose_torch_device())),
|
|
purge_deleted=selections.purge_deleted_models,
|
|
config_file_path=Path(opt.config_file) if opt.config_file else config.model_conf_path,
|
|
model_config_file_callback = lambda x: ask_user_for_config_file(x,conn_out)
|
|
)
|
|
|
|
if conn_out:
|
|
conn_out.send_bytes('*done*'.encode('utf-8'))
|
|
conn_out.close()
|
|
|
|
|
|
def do_listings(opt)->bool:
|
|
"""List installed models of various sorts, and return
|
|
True if any were requested."""
|
|
model_manager = ModelManager(config.model_conf_path)
|
|
if opt.list_models == 'diffusers':
|
|
print("Diffuser models:")
|
|
model_manager.print_models()
|
|
elif opt.list_models == 'controlnets':
|
|
print("Installed Controlnet Models:")
|
|
cnm = model_manager.list_controlnet_models()
|
|
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
|
|
elif opt.list_models == 'loras':
|
|
print("Installed LoRA/LyCORIS Models:")
|
|
cnm = model_manager.list_lora_models()
|
|
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
|
|
elif opt.list_models == 'tis':
|
|
print("Installed Textual Inversion Embeddings:")
|
|
cnm = model_manager.list_ti_models()
|
|
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
|
|
else:
|
|
return False
|
|
return True
|
|
|
|
# --------------------------------------------------------
|
|
def select_and_download_models(opt: Namespace):
|
|
precision = (
|
|
"float32"
|
|
if opt.full_precision
|
|
else choose_precision(torch.device(choose_torch_device()))
|
|
)
|
|
|
|
if do_listings(opt):
|
|
pass
|
|
elif opt.diffusers or opt.controlnets or opt.textual_inversions or opt.loras:
|
|
action = 'remove_models' if opt.delete else 'install_models'
|
|
diffusers_args = {'diffusers':ModelInstallList(remove_models=opt.diffusers or [])} \
|
|
if opt.delete \
|
|
else {'external_models':opt.diffusers or []}
|
|
install_requested_models(
|
|
**diffusers_args,
|
|
controlnet=ModelInstallList(**{action:opt.controlnets or []}),
|
|
ti=ModelInstallList(**{action:opt.textual_inversions or []}),
|
|
lora=ModelInstallList(**{action:opt.loras or []}),
|
|
precision=precision,
|
|
purge_deleted=True,
|
|
model_config_file_callback=lambda x: ask_user_for_config_file(x),
|
|
)
|
|
elif opt.default_only:
|
|
install_requested_models(
|
|
diffusers=ModelInstallList(install_models=default_dataset()),
|
|
precision=precision,
|
|
)
|
|
elif opt.yes_to_all:
|
|
install_requested_models(
|
|
diffusers=ModelInstallList(install_models=recommended_datasets()),
|
|
precision=precision,
|
|
)
|
|
else:
|
|
# needed because the torch library is loaded, even though we don't use it
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
|
|
# the third argument is needed in the Windows 11 environment in
|
|
# order to launch and resize a console window running this program
|
|
set_min_terminal_size(MIN_COLS, MIN_LINES,'invokeai-model-install')
|
|
installApp = AddModelApplication(opt)
|
|
try:
|
|
installApp.run()
|
|
except:
|
|
form = installApp.main_form
|
|
if form.subprocess and form.subprocess.is_alive():
|
|
logger.info('Terminating subprocesses')
|
|
form.subprocess.terminate()
|
|
form.subprocess = None
|
|
process_and_execute(opt, installApp.user_selections)
|
|
|
|
# -------------------------------------
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
|
parser.add_argument(
|
|
"--diffusers",
|
|
nargs="*",
|
|
help="List of URLs or repo_ids of diffusers to install/delete",
|
|
)
|
|
parser.add_argument(
|
|
"--loras",
|
|
nargs="*",
|
|
help="List of URLs or repo_ids of LoRA/LyCORIS models to install/delete",
|
|
)
|
|
parser.add_argument(
|
|
"--controlnets",
|
|
nargs="*",
|
|
help="List of URLs or repo_ids of controlnet models to install/delete",
|
|
)
|
|
parser.add_argument(
|
|
"--textual-inversions",
|
|
nargs="*",
|
|
help="List of URLs or repo_ids of textual inversion embeddings to install/delete",
|
|
)
|
|
parser.add_argument(
|
|
"--delete",
|
|
action="store_true",
|
|
help="Delete models listed on command line rather than installing them",
|
|
)
|
|
parser.add_argument(
|
|
"--full-precision",
|
|
dest="full_precision",
|
|
action=argparse.BooleanOptionalAction,
|
|
type=bool,
|
|
default=False,
|
|
help="use 32-bit weights instead of faster 16-bit weights",
|
|
)
|
|
parser.add_argument(
|
|
"--yes",
|
|
"-y",
|
|
dest="yes_to_all",
|
|
action="store_true",
|
|
help='answer "yes" to all prompts',
|
|
)
|
|
parser.add_argument(
|
|
"--default_only",
|
|
action="store_true",
|
|
help="only install the default model",
|
|
)
|
|
parser.add_argument(
|
|
"--list-models",
|
|
choices=["diffusers","loras","controlnets","tis"],
|
|
help="list installed models",
|
|
)
|
|
parser.add_argument(
|
|
"--config_file",
|
|
"-c",
|
|
dest="config_file",
|
|
type=str,
|
|
default=None,
|
|
help="path to configuration file to create",
|
|
)
|
|
parser.add_argument(
|
|
"--root_dir",
|
|
dest="root",
|
|
type=str,
|
|
default=None,
|
|
help="path to root of install directory",
|
|
)
|
|
opt = parser.parse_args()
|
|
|
|
invoke_args = []
|
|
if opt.root:
|
|
invoke_args.extend(['--root',opt.root])
|
|
if opt.full_precision:
|
|
invoke_args.extend(['--precision','float32'])
|
|
config.parse_args(invoke_args)
|
|
|
|
if not (config.root_dir / config.conf_path.parent).exists():
|
|
logger.info(
|
|
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
|
|
)
|
|
from invokeai.frontend.install import invokeai_configure
|
|
|
|
invokeai_configure()
|
|
sys.exit(0)
|
|
|
|
try:
|
|
select_and_download_models(opt)
|
|
except AssertionError as e:
|
|
logger.error(e)
|
|
sys.exit(-1)
|
|
except KeyboardInterrupt:
|
|
curses.nocbreak()
|
|
curses.echo()
|
|
curses.endwin()
|
|
logger.info("Goodbye! Come back soon.")
|
|
except widget.NotEnoughSpaceForWidget as e:
|
|
if str(e).startswith("Height of 1 allocated"):
|
|
logger.error(
|
|
"Insufficient vertical space for the interface. Please make your window taller and try again"
|
|
)
|
|
elif str(e).startswith("addwstr"):
|
|
logger.error(
|
|
"Insufficient horizontal space for the interface. Please make your window wider and try again."
|
|
)
|
|
|
|
|
|
# -------------------------------------
|
|
if __name__ == "__main__":
|
|
main()
|