InvokeAI/invokeai/app/invocations/latent.py

1390 lines
58 KiB
Python

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import inspect
from contextlib import ExitStack
from functools import singledispatchmethod
from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union
import einops
import numpy as np
import numpy.typing as npt
import torch
import torchvision
import torchvision.transforms as T
from diffusers.configuration_utils import ConfigMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.adapter import T2IAdapter
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from PIL import Image, ImageFilter
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
LatentsField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.primitives import DenoiseMaskOutput, ImageOutput, LatentsOutput
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
IPAdapterConditioningInfo,
IPAdapterData,
Range,
SDXLConditioningInfo,
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.util.mask import to_standard_float_mask
from invokeai.backend.util.silence_warnings import SilenceWarnings
from ...backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
StableDiffusionGeneratorPipeline,
T2IAdapterData,
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .controlnet_image_processors import ControlField
from .model import ModelIdentifierField, UNetField, VAEField
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()
@invocation_output("scheduler_output")
class SchedulerOutput(BaseInvocationOutput):
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
@invocation(
"scheduler",
title="Scheduler",
tags=["scheduler"],
category="latents",
version="1.0.0",
)
class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler."""
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
def invoke(self, context: InvocationContext) -> SchedulerOutput:
return SchedulerOutput(scheduler=self.scheduler)
@invocation(
"create_denoise_mask",
title="Create Denoise Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.2",
)
class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField(
default=DEFAULT_PRECISION == "float32",
description=FieldDescriptions.fp32,
ui_order=4,
)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
# if shape is not None:
# mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR)
return mask_tensor
@torch.no_grad()
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
if self.image is not None:
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
else:
image_tensor = None
mask = self.prep_mask_tensor(
context.images.get_pil(self.mask.image_name),
)
if image_tensor is not None:
vae_info = context.models.load(self.vae.vae)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO:
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = context.tensors.save(tensor=masked_latents)
else:
masked_latents_name = None
mask_name = context.tensors.save(tensor=mask)
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=masked_latents_name,
gradient=False,
)
@invocation_output("gradient_mask_output")
class GradientMaskOutput(BaseInvocationOutput):
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
expanded_mask_area: ImageField = OutputField(
description="Image representing the total gradient area of the mask. For paste-back purposes."
)
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.1.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
)
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
minimum_denoise: float = InputField(
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
)
image: Optional[ImageField] = InputField(
default=None,
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
title="[OPTIONAL] Image",
ui_order=6,
)
unet: Optional[UNetField] = InputField(
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
default=None,
input=Input.Connection,
title="[OPTIONAL] UNet",
ui_order=5,
)
vae: Optional[VAEField] = InputField(
default=None,
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
title="[OPTIONAL] VAE",
input=Input.Connection,
ui_order=7,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
fp32: bool = InputField(
default=DEFAULT_PRECISION == "float32",
description=FieldDescriptions.fp32,
ui_order=9,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.edge_radius > 0:
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is less than fully masked, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
else:
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
# compute a [0, 1] mask from the blur_tensor
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
expanded_image_dto = context.images.save(expanded_mask_image)
masked_latents_name = None
if self.unet is not None and self.vae is not None and self.image is not None:
# all three fields must be present at the same time
main_model_config = context.models.get_config(self.unet.unet.key)
assert isinstance(main_model_config, MainConfigBase)
if main_model_config.variant is ModelVariantType.Inpaint:
mask = blur_tensor
vae_info: LoadedModel = context.models.load(self.vae.vae)
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
masked_latents = ImageToLatentsInvocation.vae_encode(
vae_info, self.fp32, self.tiled, masked_image.clone()
)
masked_latents_name = context.tensors.save(tensor=masked_latents)
return GradientMaskOutput(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
)
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelIdentifierField,
scheduler_name: str,
seed: int,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {
**scheduler_config,
**scheduler_extra_config, # FIXME
"_backup": scheduler_config,
}
# make dpmpp_sde reproducable(seed can be passed only in initializer)
if scheduler_class is DPMSolverSDEScheduler:
scheduler_config["noise_sampler_seed"] = seed
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False
assert isinstance(scheduler, Scheduler)
return scheduler
@invocation(
"denoise_latents",
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.5.3",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
positive_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
)
negative_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
)
noise: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
ui_order=3,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5, description=FieldDescriptions.cfg_scale, title="CFG Scale"
)
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
ui_order=2,
)
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
default=None,
input=Input.Connection,
ui_order=5,
)
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
description=FieldDescriptions.ip_adapter,
title="IP-Adapter",
default=None,
input=Input.Connection,
ui_order=6,
)
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField(
description=FieldDescriptions.t2i_adapter,
title="T2I-Adapter",
default=None,
input=Input.Connection,
ui_order=7,
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
latents: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
ui_order=4,
)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.mask,
input=Input.Connection,
ui_order=8,
)
@field_validator("cfg_scale")
def ge_one(cls, v: Union[List[float], float]) -> Union[List[float], float]:
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
def _get_text_embeddings_and_masks(
self,
cond_list: list[ConditioningField],
context: InvocationContext,
device: torch.device,
dtype: torch.dtype,
) -> tuple[Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]], list[Optional[torch.Tensor]]]:
"""Get the text embeddings and masks from the input conditioning fields."""
text_embeddings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]] = []
text_embeddings_masks: list[Optional[torch.Tensor]] = []
for cond in cond_list:
cond_data = context.conditioning.load(cond.conditioning_name)
text_embeddings.append(cond_data.conditionings[0].to(device=device, dtype=dtype))
mask = cond.mask
if mask is not None:
mask = context.tensors.load(mask.tensor_name)
text_embeddings_masks.append(mask)
return text_embeddings, text_embeddings_masks
def _preprocess_regional_prompt_mask(
self, mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, target_height, target_width).
"""
if mask is None:
return torch.ones((1, 1, target_height, target_width), dtype=dtype)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(target_height, target_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
return resized_mask
def _concat_regional_text_embeddings(
self,
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
masks: Optional[list[Optional[torch.Tensor]]],
latent_height: int,
latent_width: int,
dtype: torch.dtype,
) -> tuple[Union[BasicConditioningInfo, SDXLConditioningInfo], Optional[TextConditioningRegions]]:
"""Concatenate regional text embeddings into a single embedding and track the region masks accordingly."""
if masks is None:
masks = [None] * len(text_conditionings)
assert len(text_conditionings) == len(masks)
is_sdxl = type(text_conditionings[0]) is SDXLConditioningInfo
all_masks_are_none = all(mask is None for mask in masks)
text_embedding = []
pooled_embedding = None
add_time_ids = None
cur_text_embedding_len = 0
processed_masks = []
embedding_ranges = []
for prompt_idx, text_embedding_info in enumerate(text_conditionings):
mask = masks[prompt_idx]
if is_sdxl:
# We choose a random SDXLConditioningInfo's pooled_embeds and add_time_ids here, with a preference for
# prompts without a mask. We prefer prompts without a mask, because they are more likely to contain
# global prompt information. In an ideal case, there should be exactly one global prompt without a
# mask, but we don't enforce this.
# HACK(ryand): The fact that we have to choose a single pooled_embedding and add_time_ids here is a
# fundamental interface issue. The SDXL Compel nodes are not designed to be used in the way that we use
# them for regional prompting. Ideally, the DenoiseLatents invocation should accept a single
# pooled_embeds tensor and a list of standard text embeds with region masks. This change would be a
# pretty major breaking change to a popular node, so for now we use this hack.
if pooled_embedding is None or mask is None:
pooled_embedding = text_embedding_info.pooled_embeds
if add_time_ids is None or mask is None:
add_time_ids = text_embedding_info.add_time_ids
text_embedding.append(text_embedding_info.embeds)
if not all_masks_are_none:
embedding_ranges.append(
Range(
start=cur_text_embedding_len, end=cur_text_embedding_len + text_embedding_info.embeds.shape[1]
)
)
processed_masks.append(
self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
)
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
text_embedding = torch.cat(text_embedding, dim=1)
assert len(text_embedding.shape) == 3 # batch_size, seq_len, token_len
regions = None
if not all_masks_are_none:
regions = TextConditioningRegions(
masks=torch.cat(processed_masks, dim=1),
ranges=embedding_ranges,
)
if is_sdxl:
return (
SDXLConditioningInfo(embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids),
regions,
)
return BasicConditioningInfo(embeds=text_embedding), regions
def get_conditioning_data(
self,
context: InvocationContext,
unet: UNet2DConditionModel,
latent_height: int,
latent_width: int,
) -> TextConditioningData:
# Normalize self.positive_conditioning and self.negative_conditioning to lists.
cond_list = self.positive_conditioning
if not isinstance(cond_list, list):
cond_list = [cond_list]
uncond_list = self.negative_conditioning
if not isinstance(uncond_list, list):
uncond_list = [uncond_list]
cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
cond_list, context, unet.device, unet.dtype
)
uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
uncond_list, context, unet.device, unet.dtype
)
cond_text_embedding, cond_regions = self._concat_regional_text_embeddings(
text_conditionings=cond_text_embeddings,
masks=cond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
uncond_text_embedding, uncond_regions = self._concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
if isinstance(self.cfg_scale, list):
assert (
len(self.cfg_scale) == self.steps
), "cfg_scale (list) must have the same length as the number of steps"
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
uncond_regions=uncond_regions,
cond_regions=cond_regions,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
)
return conditioning_data
def create_pipeline(
self,
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
def prep_control_data(
self,
context: InvocationContext,
control_input: Optional[Union[ControlField, List[ControlField]]],
latents_shape: List[int],
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> Optional[List[ControlNetData]]:
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
if control_input is None:
control_list = None
elif isinstance(control_input, list) and len(control_input) == 0:
control_list = None
elif isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
control_list = control_input
else:
control_list = None
if control_list is None:
return None
# After above handling, any control that is not None should now be of type list[ControlField].
# FIXME: add checks to skip entry if model or image is None
# and if weight is None, populate with default 1.0?
controlnet_data = []
for control_info in control_list:
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
# control_models.append(control_model)
control_image_field = control_info.image
input_image = context.images.get_pil(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
# and do real check for classifier_free_guidance?
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
control_image = prepare_control_image(
image=input_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=control_width_resize,
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
)
control_item = ControlNetData(
model=control_model, # model object
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
# any resizing needed should currently be happening in prepare_control_image(),
# but adding resize_mode to ControlNetData in case needed in the future
resize_mode=control_info.resize_mode,
)
controlnet_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return controlnet_data
def prep_ip_adapter_image_prompts(
self,
context: InvocationContext,
ip_adapters: List[IPAdapterField],
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
image_prompts = []
for single_ip_adapter in ip_adapters:
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
assert isinstance(ip_adapter_model, IPAdapter)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
single_ipa_image_fields = [single_ipa_image_fields]
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields]
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
)
image_prompts.append((image_prompt_embeds, uncond_image_prompt_embeds))
return image_prompts
def prep_ip_adapter_data(
self,
context: InvocationContext,
ip_adapters: List[IPAdapterField],
image_prompts: List[Tuple[torch.Tensor, torch.Tensor]],
exit_stack: ExitStack,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
) -> Optional[List[IPAdapterData]]:
"""If IP-Adapter is enabled, then this function loads the requisite models and adds the image prompt conditioning data."""
ip_adapter_data_list = []
for single_ip_adapter, (image_prompt_embeds, uncond_image_prompt_embeds) in zip(
ip_adapters, image_prompts, strict=True
):
ip_adapter_model = exit_stack.enter_context(context.models.load(single_ip_adapter.ip_adapter_model))
mask_field = single_ip_adapter.mask
mask = context.tensors.load(mask_field.tensor_name) if mask_field is not None else None
mask = self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
ip_adapter_data_list.append(
IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=single_ip_adapter.weight,
target_blocks=single_ip_adapter.target_blocks,
begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
mask=mask,
)
)
return ip_adapter_data_list if len(ip_adapter_data_list) > 0 else None
def run_t2i_adapters(
self,
context: InvocationContext,
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
latents_shape: list[int],
do_classifier_free_guidance: bool,
) -> Optional[list[T2IAdapterData]]:
if t2i_adapter is None:
return None
# Handle the possibility that t2i_adapter could be a list or a single T2IAdapterField.
if isinstance(t2i_adapter, T2IAdapterField):
t2i_adapter = [t2i_adapter]
if len(t2i_adapter) == 0:
return None
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1:
max_unet_downscale = 8
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
t2i_adapter_model: T2IAdapter
with t2i_adapter_loaded_model as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=t2i_input_width,
height=t2i_input_height,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
adapter_state = t2i_adapter_model(t2i_image)
if do_classifier_free_guidance:
for idx, value in enumerate(adapter_state):
adapter_state[idx] = torch.cat([value] * 2, dim=0)
t2i_adapter_data.append(
T2IAdapterData(
adapter_state=adapter_state,
weight=t2i_adapter_field.weight,
begin_step_percent=t2i_adapter_field.begin_step_percent,
end_step_percent=t2i_adapter_field.end_step_percent,
)
)
return t2i_adapter_data
# original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps
def init_scheduler(
self,
scheduler: Union[Scheduler, ConfigMixin],
device: torch.device,
steps: int,
denoising_start: float,
denoising_end: float,
seed: int,
) -> Tuple[int, List[int], int, Dict[str, Any]]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(steps, device="cpu")
timesteps = scheduler.timesteps.to(device=device)
else:
scheduler.set_timesteps(steps, device=device)
timesteps = scheduler.timesteps
# skip greater order timesteps
_timesteps = timesteps[:: scheduler.order]
# get start timestep index
t_start_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_start)))
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
# get end timestep index
t_end_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_end)))
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
# apply order to indexes
t_start_idx *= scheduler.order
t_end_idx *= scheduler.order
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
num_inference_steps = len(timesteps) // scheduler.order
scheduler_step_kwargs: Dict[str, Any] = {}
scheduler_step_signature = inspect.signature(scheduler.step)
if "generator" in scheduler_step_signature.parameters:
# At some point, someone decided that schedulers that accept a generator should use the original seed with
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
# reproducibility.
#
# These Invoke-supported schedulers accept a generator as of 2024-06-04:
# - DDIMScheduler
# - DDPMScheduler
# - DPMSolverMultistepScheduler
# - EulerAncestralDiscreteScheduler
# - EulerDiscreteScheduler
# - KDPM2AncestralDiscreteScheduler
# - LCMScheduler
# - TCDScheduler
scheduler_step_kwargs.update({"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)})
if isinstance(scheduler, TCDScheduler):
scheduler_step_kwargs.update({"eta": 1.0})
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], bool]:
if self.denoise_mask is None:
return None, None, False
mask = context.tensors.load(self.denoise_mask.mask_name)
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
if self.denoise_mask.masked_latents_name is not None:
masked_latents = context.tensors.load(self.denoise_mask.masked_latents_name)
else:
masked_latents = torch.where(mask < 0.5, 0.0, latents)
return 1 - mask, masked_latents, self.denoise_mask.gradient
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
with SilenceWarnings(): # this quenches NSFW nag from diffusers
seed = None
noise = None
if self.noise is not None:
noise = context.tensors.load(self.noise.latents_name)
seed = self.noise.seed
if self.latents is not None:
latents = context.tensors.load(self.latents.latents_name)
if seed is None:
seed = self.latents.seed
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
elif noise is not None:
latents = torch.zeros_like(noise)
else:
raise Exception("'latents' or 'noise' must be provided!")
if seed is None:
seed = 0
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
t2i_adapter_data = self.run_t2i_adapters(
context,
self.t2i_adapter,
latents.shape,
do_classifier_free_guidance=True,
)
ip_adapters: List[IPAdapterField] = []
if self.ip_adapter is not None:
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
if isinstance(self.ip_adapter, list):
ip_adapters = self.ip_adapter
else:
ip_adapters = [self.ip_adapter]
# If there are IP adapters, the following line runs the adapters' CLIPVision image encoders to return
# a series of image conditioning embeddings. This is being done here rather than in the
# big model context below in order to use less VRAM on low-VRAM systems.
# The image prompts are then passed to prep_ip_adapter_data().
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
# get the unet's config so that we can pass the base to dispatch_progress()
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info as unet,
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
set_seamless(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
if mask is not None:
mask = mask.to(device=unet.device, dtype=unet.dtype)
if masked_latents is not None:
masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = self.create_pipeline(unet, scheduler)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
)
controlnet_data = self.prep_control_data(
context=context,
control_input=self.control,
latents_shape=latents.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
ip_adapter_data = self.prep_ip_adapter_data(
context=context,
ip_adapters=ip_adapters,
image_prompts=image_prompts,
exit_stack=exit_stack,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
result_latents = pipeline.latents_from_embeddings(
latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise,
seed=seed,
mask=mask,
masked_latents=masked_latents,
gradient_mask=gradient_mask,
num_inference_steps=num_inference_steps,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=controlnet_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
@invocation(
"l2i",
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.2.2",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, torch.nn.Module)
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
vae.post_quant_conv.to(latents.dtype)
vae.decoder.conv_in.to(latents.dtype)
vae.decoder.mid_block.to(latents.dtype)
else:
latents = latents.float()
else:
vae.to(dtype=torch.float16)
latents = latents.half()
if self.tiled or context.config.get().force_tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode():
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
TorchDevice.empty_cache()
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@invocation(
"lresize",
title="Resize Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.2",
)
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
width: int = InputField(
ge=64,
multiple_of=LATENT_SCALE_FACTOR,
description=FieldDescriptions.width,
)
height: int = InputField(
ge=64,
multiple_of=LATENT_SCALE_FACTOR,
description=FieldDescriptions.width,
)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
device = TorchDevice.choose_torch_device()
resized_latents = torch.nn.functional.interpolate(
latents.to(device),
size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation(
"lscale",
title="Scale Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.2",
)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
scale_factor: float = InputField(gt=0, description=FieldDescriptions.scale_factor)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
device = TorchDevice.choose_torch_device()
# resizing
resized_latents = torch.nn.functional.interpolate(
latents.to(device),
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation(
"i2l",
title="Image to Latents",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.0.2",
)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
image: ImageField = InputField(
description="The image to encode",
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
@staticmethod
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae, torch.nn.Module)
orig_dtype = vae.dtype
if upcast:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
vae.post_quant_conv.to(orig_dtype)
vae.decoder.conv_in.to(orig_dtype)
vae.decoder.mid_block.to(orig_dtype)
# else:
# latents = latents.float()
else:
vae.to(dtype=torch.float16)
# latents = latents.half()
if tiled:
vae.enable_tiling()
else:
vae.disable_tiling()
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
latents = vae.config.scaling_factor * latents
latents = latents.to(dtype=orig_dtype)
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
@singledispatchmethod
@staticmethod
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module)
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents: torch.Tensor = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
return latents
@_encode_to_tensor.register
@staticmethod
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module)
latents: torch.FloatTensor = vae.encode(image_tensor).latents
return latents
@invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend"],
category="latents",
version="1.0.3",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.tensors.load(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name)
if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.")
device = TorchDevice.choose_torch_device()
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
return v2_torch
else:
assert isinstance(v2, np.ndarray)
return v2
# blend
bl = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)