mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
320 lines
10 KiB
Python
320 lines
10 KiB
Python
import argparse, os, sys, glob
|
|
import torch
|
|
import numpy as np
|
|
from omegaconf import OmegaConf
|
|
from PIL import Image
|
|
from tqdm import tqdm, trange
|
|
from itertools import islice
|
|
from einops import rearrange
|
|
from torchvision.utils import make_grid
|
|
import time
|
|
from pytorch_lightning import seed_everything
|
|
from torch import autocast
|
|
from contextlib import contextmanager, nullcontext
|
|
|
|
import k_diffusion as K
|
|
import torch.nn as nn
|
|
|
|
from ldm.util import instantiate_from_config
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
from ldm.invoke.devices import choose_torch_device
|
|
|
|
|
|
def chunk(it, size):
|
|
it = iter(it)
|
|
return iter(lambda: tuple(islice(it, size)), ())
|
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
print(f"Loading model from {ckpt}")
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
if "global_step" in pl_sd:
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
sd = pl_sd["state_dict"]
|
|
model = instantiate_from_config(config.model)
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
if len(m) > 0 and verbose:
|
|
print("missing keys:")
|
|
print(m)
|
|
if len(u) > 0 and verbose:
|
|
print("unexpected keys:")
|
|
print(u)
|
|
|
|
model.to(choose_torch_device())
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--prompt",
|
|
type=str,
|
|
nargs="?",
|
|
default="a painting of a virus monster playing guitar",
|
|
help="the prompt to render",
|
|
)
|
|
parser.add_argument(
|
|
"--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples"
|
|
)
|
|
parser.add_argument(
|
|
"--skip_grid",
|
|
action="store_true",
|
|
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
|
)
|
|
parser.add_argument(
|
|
"--skip_save",
|
|
action="store_true",
|
|
help="do not save individual samples. For speed measurements.",
|
|
)
|
|
parser.add_argument(
|
|
"--ddim_steps",
|
|
type=int,
|
|
default=50,
|
|
help="number of ddim sampling steps",
|
|
)
|
|
parser.add_argument(
|
|
"--plms",
|
|
action="store_true",
|
|
help="use plms sampling",
|
|
)
|
|
parser.add_argument(
|
|
"--klms",
|
|
action="store_true",
|
|
help="use klms sampling",
|
|
)
|
|
parser.add_argument(
|
|
"--laion400m",
|
|
action="store_true",
|
|
help="uses the LAION400M model",
|
|
)
|
|
parser.add_argument(
|
|
"--fixed_code",
|
|
action="store_true",
|
|
help="if enabled, uses the same starting code across samples ",
|
|
)
|
|
parser.add_argument(
|
|
"--ddim_eta",
|
|
type=float,
|
|
default=0.0,
|
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
|
)
|
|
parser.add_argument(
|
|
"--n_iter",
|
|
type=int,
|
|
default=2,
|
|
help="sample this often",
|
|
)
|
|
parser.add_argument(
|
|
"--H",
|
|
type=int,
|
|
default=512,
|
|
help="image height, in pixel space",
|
|
)
|
|
parser.add_argument(
|
|
"--W",
|
|
type=int,
|
|
default=512,
|
|
help="image width, in pixel space",
|
|
)
|
|
parser.add_argument(
|
|
"--C",
|
|
type=int,
|
|
default=4,
|
|
help="latent channels",
|
|
)
|
|
parser.add_argument(
|
|
"--f",
|
|
type=int,
|
|
default=8,
|
|
help="downsampling factor",
|
|
)
|
|
parser.add_argument(
|
|
"--n_samples",
|
|
type=int,
|
|
default=3,
|
|
help="how many samples to produce for each given prompt. A.k.a. batch size",
|
|
)
|
|
parser.add_argument(
|
|
"--n_rows",
|
|
type=int,
|
|
default=0,
|
|
help="rows in the grid (default: n_samples)",
|
|
)
|
|
parser.add_argument(
|
|
"--scale",
|
|
type=float,
|
|
default=7.5,
|
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
|
)
|
|
parser.add_argument(
|
|
"--from-file",
|
|
type=str,
|
|
help="if specified, load prompts from this file",
|
|
)
|
|
parser.add_argument(
|
|
"--config",
|
|
type=str,
|
|
default="configs/stable-diffusion/v1-inference.yaml",
|
|
help="path to config which constructs model",
|
|
)
|
|
parser.add_argument(
|
|
"--ckpt",
|
|
type=str,
|
|
default="models/ldm/stable-diffusion-v1/model.ckpt",
|
|
help="path to checkpoint of model",
|
|
)
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="the seed (for reproducible sampling)",
|
|
)
|
|
parser.add_argument(
|
|
"--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast"
|
|
)
|
|
opt = parser.parse_args()
|
|
|
|
if opt.laion400m:
|
|
print("Falling back to LAION 400M model...")
|
|
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
|
|
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
|
|
opt.outdir = "outputs/txt2img-samples-laion400m"
|
|
|
|
config = OmegaConf.load(f"{opt.config}")
|
|
model = load_model_from_config(config, f"{opt.ckpt}")
|
|
|
|
seed_everything(opt.seed)
|
|
|
|
device = torch.device(choose_torch_device())
|
|
model = model.to(device)
|
|
|
|
# for klms
|
|
model_wrap = K.external.CompVisDenoiser(model)
|
|
|
|
class CFGDenoiser(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.inner_model = model
|
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale):
|
|
x_in = torch.cat([x] * 2)
|
|
sigma_in = torch.cat([sigma] * 2)
|
|
cond_in = torch.cat([uncond, cond])
|
|
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
|
return uncond + (cond - uncond) * cond_scale
|
|
|
|
if opt.plms:
|
|
sampler = PLMSSampler(model)
|
|
else:
|
|
sampler = DDIMSampler(model)
|
|
|
|
os.makedirs(opt.outdir, exist_ok=True)
|
|
outpath = opt.outdir
|
|
|
|
batch_size = opt.n_samples
|
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
|
if not opt.from_file:
|
|
prompt = opt.prompt
|
|
assert prompt is not None
|
|
data = [batch_size * [prompt]]
|
|
|
|
else:
|
|
print(f"reading prompts from {opt.from_file}")
|
|
with open(opt.from_file, "r") as f:
|
|
data = f.read().splitlines()
|
|
if len(data) >= batch_size:
|
|
data = list(chunk(data, batch_size))
|
|
else:
|
|
while len(data) < batch_size:
|
|
data.append(data[-1])
|
|
data = [data]
|
|
|
|
sample_path = os.path.join(outpath, "samples")
|
|
os.makedirs(sample_path, exist_ok=True)
|
|
base_count = len(os.listdir(sample_path))
|
|
grid_count = len(os.listdir(outpath)) - 1
|
|
|
|
start_code = None
|
|
if opt.fixed_code:
|
|
shape = [opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f]
|
|
if device.type == "mps":
|
|
start_code = torch.randn(shape, device="cpu").to(device)
|
|
else:
|
|
torch.randn(shape, device=device)
|
|
|
|
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
|
if device.type in ["mps", "cpu"]:
|
|
precision_scope = nullcontext # have to use f32 on mps
|
|
with torch.no_grad():
|
|
with precision_scope(device.type):
|
|
with model.ema_scope():
|
|
tic = time.time()
|
|
all_samples = list()
|
|
for n in trange(opt.n_iter, desc="Sampling"):
|
|
for prompts in tqdm(data, desc="data"):
|
|
uc = None
|
|
if opt.scale != 1.0:
|
|
uc = model.get_learned_conditioning(batch_size * [""])
|
|
if isinstance(prompts, tuple):
|
|
prompts = list(prompts)
|
|
c = model.get_learned_conditioning(prompts)
|
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
|
|
|
if not opt.klms:
|
|
samples_ddim, _ = sampler.sample(
|
|
S=opt.ddim_steps,
|
|
conditioning=c,
|
|
batch_size=opt.n_samples,
|
|
shape=shape,
|
|
verbose=False,
|
|
unconditional_guidance_scale=opt.scale,
|
|
unconditional_conditioning=uc,
|
|
eta=opt.ddim_eta,
|
|
x_T=start_code,
|
|
)
|
|
else:
|
|
sigmas = model_wrap.get_sigmas(opt.ddim_steps)
|
|
if start_code:
|
|
x = start_code
|
|
else:
|
|
x = torch.randn([opt.n_samples, *shape], device=device) * sigmas[0] # for GPU draw
|
|
model_wrap_cfg = CFGDenoiser(model_wrap)
|
|
extra_args = {"cond": c, "uncond": uc, "cond_scale": opt.scale}
|
|
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args=extra_args)
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
if not opt.skip_save:
|
|
for x_sample in x_samples_ddim:
|
|
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c")
|
|
Image.fromarray(x_sample.astype(np.uint8)).save(
|
|
os.path.join(sample_path, f"{base_count:05}.png")
|
|
)
|
|
base_count += 1
|
|
|
|
if not opt.skip_grid:
|
|
all_samples.append(x_samples_ddim)
|
|
|
|
if not opt.skip_grid:
|
|
# additionally, save as grid
|
|
grid = torch.stack(all_samples, 0)
|
|
grid = rearrange(grid, "n b c h w -> (n b) c h w")
|
|
grid = make_grid(grid, nrow=n_rows)
|
|
|
|
# to image
|
|
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
|
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
|
|
grid_count += 1
|
|
|
|
toc = time.time()
|
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|