mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
257 lines
10 KiB
Python
257 lines
10 KiB
Python
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
|
|
|
|
from typing import Annotated, Literal, Optional, Union
|
|
|
|
from fastapi import Query
|
|
from fastapi.routing import APIRouter, HTTPException
|
|
from pydantic import BaseModel, Field, parse_obj_as
|
|
from ..dependencies import ApiDependencies
|
|
from invokeai.backend import SDModelType
|
|
|
|
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
|
|
|
|
|
class VaeRepo(BaseModel):
|
|
repo_id: str = Field(description="The repo ID to use for this VAE")
|
|
path: Optional[str] = Field(description="The path to the VAE")
|
|
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
|
|
|
|
class ModelInfo(BaseModel):
|
|
description: Optional[str] = Field(description="A description of the model")
|
|
model_name: str = Field(description="The name of the model")
|
|
model_type: str = Field(description="The type of the model")
|
|
|
|
class DiffusersModelInfo(ModelInfo):
|
|
format: Literal['folder'] = 'folder'
|
|
|
|
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
|
|
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
|
|
path: Optional[str] = Field(description="The path to the model")
|
|
|
|
class CkptModelInfo(ModelInfo):
|
|
format: Literal['ckpt'] = 'ckpt'
|
|
|
|
config: str = Field(description="The path to the model config")
|
|
weights: str = Field(description="The path to the model weights")
|
|
vae: str = Field(description="The path to the model VAE")
|
|
width: Optional[int] = Field(description="The width of the model")
|
|
height: Optional[int] = Field(description="The height of the model")
|
|
|
|
class SafetensorsModelInfo(CkptModelInfo):
|
|
format: Literal['safetensors'] = 'safetensors'
|
|
|
|
class CreateModelRequest(BaseModel):
|
|
name: str = Field(description="The name of the model")
|
|
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
|
|
|
|
class CreateModelResponse(BaseModel):
|
|
name: str = Field(description="The name of the new model")
|
|
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
|
|
status: str = Field(description="The status of the API response")
|
|
|
|
class ConversionRequest(BaseModel):
|
|
name: str = Field(description="The name of the new model")
|
|
info: CkptModelInfo = Field(description="The converted model info")
|
|
save_location: str = Field(description="The path to save the converted model weights")
|
|
|
|
|
|
class ConvertedModelResponse(BaseModel):
|
|
name: str = Field(description="The name of the new model")
|
|
info: DiffusersModelInfo = Field(description="The converted model info")
|
|
|
|
class ModelsList(BaseModel):
|
|
models: dict[str, dict[str, Annotated[Union[(DiffusersModelInfo,CkptModelInfo,SafetensorsModelInfo)], Field(discriminator="format")]]]
|
|
|
|
|
|
@models_router.get(
|
|
"/",
|
|
operation_id="list_models",
|
|
responses={200: {"model": ModelsList }},
|
|
)
|
|
async def list_models(
|
|
model_type: SDModelType = Query(
|
|
default=SDModelType.Diffusers, description="The type of model to get"
|
|
),
|
|
) -> ModelsList:
|
|
"""Gets a list of models"""
|
|
models_raw = ApiDependencies.invoker.services.model_manager.list_models(model_type)
|
|
models = parse_obj_as(ModelsList, { "models": models_raw })
|
|
return models
|
|
|
|
|
|
@models_router.post(
|
|
"/",
|
|
operation_id="update_model",
|
|
responses={200: {"status": "success"}},
|
|
)
|
|
async def update_model(
|
|
model_request: CreateModelRequest
|
|
) -> CreateModelResponse:
|
|
""" Add Model """
|
|
model_request_info = model_request.info
|
|
info_dict = model_request_info.dict()
|
|
model_response = CreateModelResponse(name=model_request.name, info=model_request.info, status="success")
|
|
|
|
ApiDependencies.invoker.services.model_manager.add_model(
|
|
model_name=model_request.name,
|
|
model_attributes=info_dict,
|
|
clobber=True,
|
|
)
|
|
|
|
return model_response
|
|
|
|
|
|
@models_router.delete(
|
|
"/{model_name}",
|
|
operation_id="del_model",
|
|
responses={
|
|
204: {
|
|
"description": "Model deleted successfully"
|
|
},
|
|
404: {
|
|
"description": "Model not found"
|
|
}
|
|
},
|
|
)
|
|
async def delete_model(model_name: str) -> None:
|
|
"""Delete Model"""
|
|
model_names = ApiDependencies.invoker.services.model_manager.model_names()
|
|
logger = ApiDependencies.invoker.services.logger
|
|
model_exists = model_name in model_names
|
|
|
|
# check if model exists
|
|
logger.info(f"Checking for model {model_name}...")
|
|
|
|
if model_exists:
|
|
logger.info(f"Deleting Model: {model_name}")
|
|
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
|
|
logger.info(f"Model Deleted: {model_name}")
|
|
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
|
|
|
|
else:
|
|
logger.error("Model not found")
|
|
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
|
|
|
|
|
# @socketio.on("convertToDiffusers")
|
|
# def convert_to_diffusers(model_to_convert: dict):
|
|
# try:
|
|
# if model_info := self.generate.model_manager.model_info(
|
|
# model_name=model_to_convert["model_name"]
|
|
# ):
|
|
# if "weights" in model_info:
|
|
# ckpt_path = Path(model_info["weights"])
|
|
# original_config_file = Path(model_info["config"])
|
|
# model_name = model_to_convert["model_name"]
|
|
# model_description = model_info["description"]
|
|
# else:
|
|
# self.socketio.emit(
|
|
# "error", {"message": "Model is not a valid checkpoint file"}
|
|
# )
|
|
# else:
|
|
# self.socketio.emit(
|
|
# "error", {"message": "Could not retrieve model info."}
|
|
# )
|
|
|
|
# if not ckpt_path.is_absolute():
|
|
# ckpt_path = Path(Globals.root, ckpt_path)
|
|
|
|
# if original_config_file and not original_config_file.is_absolute():
|
|
# original_config_file = Path(Globals.root, original_config_file)
|
|
|
|
# diffusers_path = Path(
|
|
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
|
|
# )
|
|
|
|
# if model_to_convert["save_location"] == "root":
|
|
# diffusers_path = Path(
|
|
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
|
|
# )
|
|
|
|
# if (
|
|
# model_to_convert["save_location"] == "custom"
|
|
# and model_to_convert["custom_location"] is not None
|
|
# ):
|
|
# diffusers_path = Path(
|
|
# model_to_convert["custom_location"], f"{model_name}_diffusers"
|
|
# )
|
|
|
|
# if diffusers_path.exists():
|
|
# shutil.rmtree(diffusers_path)
|
|
|
|
# self.generate.model_manager.convert_and_import(
|
|
# ckpt_path,
|
|
# diffusers_path,
|
|
# model_name=model_name,
|
|
# model_description=model_description,
|
|
# vae=None,
|
|
# original_config_file=original_config_file,
|
|
# commit_to_conf=opt.conf,
|
|
# )
|
|
|
|
# new_model_list = self.generate.model_manager.list_models()
|
|
# socketio.emit(
|
|
# "modelConverted",
|
|
# {
|
|
# "new_model_name": model_name,
|
|
# "model_list": new_model_list,
|
|
# "update": True,
|
|
# },
|
|
# )
|
|
# print(f">> Model Converted: {model_name}")
|
|
# except Exception as e:
|
|
# self.handle_exceptions(e)
|
|
|
|
# @socketio.on("mergeDiffusersModels")
|
|
# def merge_diffusers_models(model_merge_info: dict):
|
|
# try:
|
|
# models_to_merge = model_merge_info["models_to_merge"]
|
|
# model_ids_or_paths = [
|
|
# self.generate.model_manager.model_name_or_path(x)
|
|
# for x in models_to_merge
|
|
# ]
|
|
# merged_pipe = merge_diffusion_models(
|
|
# model_ids_or_paths,
|
|
# model_merge_info["alpha"],
|
|
# model_merge_info["interp"],
|
|
# model_merge_info["force"],
|
|
# )
|
|
|
|
# dump_path = global_models_dir() / "merged_models"
|
|
# if model_merge_info["model_merge_save_path"] is not None:
|
|
# dump_path = Path(model_merge_info["model_merge_save_path"])
|
|
|
|
# os.makedirs(dump_path, exist_ok=True)
|
|
# dump_path = dump_path / model_merge_info["merged_model_name"]
|
|
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
|
|
|
|
# merged_model_config = dict(
|
|
# model_name=model_merge_info["merged_model_name"],
|
|
# description=f'Merge of models {", ".join(models_to_merge)}',
|
|
# commit_to_conf=opt.conf,
|
|
# )
|
|
|
|
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
|
|
# "vae", None
|
|
# ):
|
|
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
|
|
# merged_model_config.update(vae=vae)
|
|
|
|
# self.generate.model_manager.import_diffuser_model(
|
|
# dump_path, **merged_model_config
|
|
# )
|
|
# new_model_list = self.generate.model_manager.list_models()
|
|
|
|
# socketio.emit(
|
|
# "modelsMerged",
|
|
# {
|
|
# "merged_models": models_to_merge,
|
|
# "merged_model_name": model_merge_info["merged_model_name"],
|
|
# "model_list": new_model_list,
|
|
# "update": True,
|
|
# },
|
|
# )
|
|
# print(f">> Models Merged: {models_to_merge}")
|
|
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
|
|
# except Exception as e:
|