mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
674 lines
27 KiB
Python
674 lines
27 KiB
Python
# Invocations for ControlNet image preprocessors
|
|
# initial implementation by Gregg Helt, 2023
|
|
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
|
from builtins import bool, float
|
|
from typing import Dict, List, Literal, Union
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from controlnet_aux import (
|
|
ContentShuffleDetector,
|
|
LeresDetector,
|
|
MediapipeFaceDetector,
|
|
MidasDetector,
|
|
MLSDdetector,
|
|
NormalBaeDetector,
|
|
PidiNetDetector,
|
|
SamDetector,
|
|
ZoeDetector,
|
|
)
|
|
from controlnet_aux.util import HWC3, ade_palette
|
|
from PIL import Image
|
|
from pydantic import BaseModel, Field, field_validator, model_validator
|
|
from transformers import pipeline
|
|
|
|
from invokeai.app.invocations.baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
Classification,
|
|
invocation,
|
|
invocation_output,
|
|
)
|
|
from invokeai.app.invocations.fields import (
|
|
FieldDescriptions,
|
|
ImageField,
|
|
InputField,
|
|
OutputField,
|
|
UIType,
|
|
WithBoard,
|
|
WithMetadata,
|
|
)
|
|
from invokeai.app.invocations.model import ModelIdentifierField
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
|
|
from invokeai.backend.image_util.canny import get_canny_edges
|
|
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
|
|
from invokeai.backend.image_util.hed import HEDProcessor
|
|
from invokeai.backend.image_util.lineart import LineartProcessor
|
|
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
|
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
|
|
|
|
|
class ControlField(BaseModel):
|
|
image: ImageField = Field(description="The control image")
|
|
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
|
|
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
|
|
begin_step_percent: float = Field(
|
|
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
|
|
)
|
|
end_step_percent: float = Field(
|
|
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
|
|
)
|
|
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
|
|
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
|
|
|
@field_validator("control_weight")
|
|
@classmethod
|
|
def validate_control_weight(cls, v):
|
|
validate_weights(v)
|
|
return v
|
|
|
|
@model_validator(mode="after")
|
|
def validate_begin_end_step_percent(self):
|
|
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
return self
|
|
|
|
|
|
@invocation_output("control_output")
|
|
class ControlOutput(BaseInvocationOutput):
|
|
"""node output for ControlNet info"""
|
|
|
|
# Outputs
|
|
control: ControlField = OutputField(description=FieldDescriptions.control)
|
|
|
|
|
|
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.2")
|
|
class ControlNetInvocation(BaseInvocation):
|
|
"""Collects ControlNet info to pass to other nodes"""
|
|
|
|
image: ImageField = InputField(description="The control image")
|
|
control_model: ModelIdentifierField = InputField(
|
|
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
|
|
)
|
|
control_weight: Union[float, List[float]] = InputField(
|
|
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
|
|
)
|
|
begin_step_percent: float = InputField(
|
|
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
|
|
)
|
|
end_step_percent: float = InputField(
|
|
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
|
|
)
|
|
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
|
|
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
|
|
|
|
@field_validator("control_weight")
|
|
@classmethod
|
|
def validate_control_weight(cls, v):
|
|
validate_weights(v)
|
|
return v
|
|
|
|
@model_validator(mode="after")
|
|
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
|
|
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
return self
|
|
|
|
def invoke(self, context: InvocationContext) -> ControlOutput:
|
|
return ControlOutput(
|
|
control=ControlField(
|
|
image=self.image,
|
|
control_model=self.control_model,
|
|
control_weight=self.control_weight,
|
|
begin_step_percent=self.begin_step_percent,
|
|
end_step_percent=self.end_step_percent,
|
|
control_mode=self.control_mode,
|
|
resize_mode=self.resize_mode,
|
|
),
|
|
)
|
|
|
|
|
|
# This invocation exists for other invocations to subclass it - do not register with @invocation!
|
|
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Base class for invocations that preprocess images for ControlNet"""
|
|
|
|
image: ImageField = InputField(description="The image to process")
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
# superclass just passes through image without processing
|
|
return image
|
|
|
|
def load_image(self, context: InvocationContext) -> Image.Image:
|
|
# allows override for any special formatting specific to the preprocessor
|
|
return context.images.get_pil(self.image.image_name, "RGB")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
self._context = context
|
|
raw_image = self.load_image(context)
|
|
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
|
processed_image = self.run_processor(raw_image)
|
|
|
|
# currently can't see processed image in node UI without a showImage node,
|
|
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
|
|
image_dto = context.images.save(image=processed_image)
|
|
|
|
"""Builds an ImageOutput and its ImageField"""
|
|
processed_image_field = ImageField(image_name=image_dto.image_name)
|
|
return ImageOutput(
|
|
image=processed_image_field,
|
|
# width=processed_image.width,
|
|
width=image_dto.width,
|
|
# height=processed_image.height,
|
|
height=image_dto.height,
|
|
# mode=processed_image.mode,
|
|
)
|
|
|
|
|
|
@invocation(
|
|
"canny_image_processor",
|
|
title="Canny Processor",
|
|
tags=["controlnet", "canny"],
|
|
category="controlnet",
|
|
version="1.3.3",
|
|
)
|
|
class CannyImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Canny edge detection for ControlNet"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
low_threshold: int = InputField(
|
|
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
|
|
)
|
|
high_threshold: int = InputField(
|
|
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
|
|
)
|
|
|
|
def load_image(self, context: InvocationContext) -> Image.Image:
|
|
# Keep alpha channel for Canny processing to detect edges of transparent areas
|
|
return context.images.get_pil(self.image.image_name, "RGBA")
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
processed_image = get_canny_edges(
|
|
image,
|
|
self.low_threshold,
|
|
self.high_threshold,
|
|
detect_resolution=self.detect_resolution,
|
|
image_resolution=self.image_resolution,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"hed_image_processor",
|
|
title="HED (softedge) Processor",
|
|
tags=["controlnet", "hed", "softedge"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class HedImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies HED edge detection to image"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
# safe not supported in controlnet_aux v0.0.3
|
|
# safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
|
|
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
hed_processor = HEDProcessor()
|
|
processed_image = hed_processor.run(
|
|
image,
|
|
detect_resolution=self.detect_resolution,
|
|
image_resolution=self.image_resolution,
|
|
# safe not supported in controlnet_aux v0.0.3
|
|
# safe=self.safe,
|
|
scribble=self.scribble,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"lineart_image_processor",
|
|
title="Lineart Processor",
|
|
tags=["controlnet", "lineart"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class LineartImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies line art processing to image"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
lineart_processor = LineartProcessor()
|
|
processed_image = lineart_processor.run(
|
|
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"lineart_anime_image_processor",
|
|
title="Lineart Anime Processor",
|
|
tags=["controlnet", "lineart", "anime"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies line art anime processing to image"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
processor = LineartAnimeProcessor()
|
|
processed_image = processor.run(
|
|
image,
|
|
detect_resolution=self.detect_resolution,
|
|
image_resolution=self.image_resolution,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"midas_depth_image_processor",
|
|
title="Midas Depth Processor",
|
|
tags=["controlnet", "midas"],
|
|
category="controlnet",
|
|
version="1.2.4",
|
|
)
|
|
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies Midas depth processing to image"""
|
|
|
|
a_mult: float = InputField(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
|
|
bg_th: float = InputField(default=0.1, ge=0, description="Midas parameter `bg_th`")
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
# depth_and_normal not supported in controlnet_aux v0.0.3
|
|
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
# TODO: replace from_pretrained() calls with context.models.download_and_cache() (or similar)
|
|
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
|
processed_image = midas_processor(
|
|
image,
|
|
a=np.pi * self.a_mult,
|
|
bg_th=self.bg_th,
|
|
image_resolution=self.image_resolution,
|
|
detect_resolution=self.detect_resolution,
|
|
# dept_and_normal not supported in controlnet_aux v0.0.3
|
|
# depth_and_normal=self.depth_and_normal,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"normalbae_image_processor",
|
|
title="Normal BAE Processor",
|
|
tags=["controlnet"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies NormalBae processing to image"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
|
processed_image = normalbae_processor(
|
|
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.3"
|
|
)
|
|
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies MLSD processing to image"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
|
|
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
|
|
processed_image = mlsd_processor(
|
|
image,
|
|
detect_resolution=self.detect_resolution,
|
|
image_resolution=self.image_resolution,
|
|
thr_v=self.thr_v,
|
|
thr_d=self.thr_d,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.3"
|
|
)
|
|
class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies PIDI processing to image"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
|
|
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
|
processed_image = pidi_processor(
|
|
image,
|
|
detect_resolution=self.detect_resolution,
|
|
image_resolution=self.image_resolution,
|
|
safe=self.safe,
|
|
scribble=self.scribble,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"content_shuffle_image_processor",
|
|
title="Content Shuffle Processor",
|
|
tags=["controlnet", "contentshuffle"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies content shuffle processing to image"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
h: int = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
|
|
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
|
|
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
content_shuffle_processor = ContentShuffleDetector()
|
|
processed_image = content_shuffle_processor(
|
|
image,
|
|
detect_resolution=self.detect_resolution,
|
|
image_resolution=self.image_resolution,
|
|
h=self.h,
|
|
w=self.w,
|
|
f=self.f,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
|
|
@invocation(
|
|
"zoe_depth_image_processor",
|
|
title="Zoe (Depth) Processor",
|
|
tags=["controlnet", "zoe", "depth"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies Zoe depth processing to image"""
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
|
processed_image = zoe_depth_processor(image)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"mediapipe_face_processor",
|
|
title="Mediapipe Face Processor",
|
|
tags=["controlnet", "mediapipe", "face"],
|
|
category="controlnet",
|
|
version="1.2.4",
|
|
)
|
|
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies mediapipe face processing to image"""
|
|
|
|
max_faces: int = InputField(default=1, ge=1, description="Maximum number of faces to detect")
|
|
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
mediapipe_face_processor = MediapipeFaceDetector()
|
|
processed_image = mediapipe_face_processor(
|
|
image,
|
|
max_faces=self.max_faces,
|
|
min_confidence=self.min_confidence,
|
|
image_resolution=self.image_resolution,
|
|
detect_resolution=self.detect_resolution,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"leres_image_processor",
|
|
title="Leres (Depth) Processor",
|
|
tags=["controlnet", "leres", "depth"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies leres processing to image"""
|
|
|
|
thr_a: float = InputField(default=0, description="Leres parameter `thr_a`")
|
|
thr_b: float = InputField(default=0, description="Leres parameter `thr_b`")
|
|
boost: bool = InputField(default=False, description="Whether to use boost mode")
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
|
|
processed_image = leres_processor(
|
|
image,
|
|
thr_a=self.thr_a,
|
|
thr_b=self.thr_b,
|
|
boost=self.boost,
|
|
detect_resolution=self.detect_resolution,
|
|
image_resolution=self.image_resolution,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"tile_image_processor",
|
|
title="Tile Resample Processor",
|
|
tags=["controlnet", "tile"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
|
"""Tile resampler processor"""
|
|
|
|
# res: int = InputField(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
|
|
down_sampling_rate: float = InputField(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
|
|
|
|
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
|
|
def tile_resample(
|
|
self,
|
|
np_img: np.ndarray,
|
|
res=512, # never used?
|
|
down_sampling_rate=1.0,
|
|
):
|
|
np_img = HWC3(np_img)
|
|
if down_sampling_rate < 1.1:
|
|
return np_img
|
|
H, W, C = np_img.shape
|
|
H = int(float(H) / float(down_sampling_rate))
|
|
W = int(float(W) / float(down_sampling_rate))
|
|
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
|
|
return np_img
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
np_img = np.array(image, dtype=np.uint8)
|
|
processed_np_image = self.tile_resample(
|
|
np_img,
|
|
# res=self.tile_size,
|
|
down_sampling_rate=self.down_sampling_rate,
|
|
)
|
|
processed_image = Image.fromarray(processed_np_image)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"segment_anything_processor",
|
|
title="Segment Anything Processor",
|
|
tags=["controlnet", "segmentanything"],
|
|
category="controlnet",
|
|
version="1.2.4",
|
|
)
|
|
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
|
|
"""Applies segment anything processing to image"""
|
|
|
|
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
|
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
|
|
"ybelkada/segment-anything", subfolder="checkpoints"
|
|
)
|
|
np_img = np.array(image, dtype=np.uint8)
|
|
processed_image = segment_anything_processor(
|
|
np_img, image_resolution=self.image_resolution, detect_resolution=self.detect_resolution
|
|
)
|
|
return processed_image
|
|
|
|
|
|
class SamDetectorReproducibleColors(SamDetector):
|
|
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
|
|
# base class show_anns() method randomizes colors,
|
|
# which seems to also lead to non-reproducible image generation
|
|
# so using ADE20k color palette instead
|
|
def show_anns(self, anns: List[Dict]):
|
|
if len(anns) == 0:
|
|
return
|
|
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
|
|
h, w = anns[0]["segmentation"].shape
|
|
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
|
|
palette = ade_palette()
|
|
for i, ann in enumerate(sorted_anns):
|
|
m = ann["segmentation"]
|
|
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
|
|
# doing modulo just in case number of annotated regions exceeds number of colors in palette
|
|
ann_color = palette[i % len(palette)]
|
|
img[:, :] = ann_color
|
|
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
|
|
return np.array(final_img, dtype=np.uint8)
|
|
|
|
|
|
@invocation(
|
|
"color_map_image_processor",
|
|
title="Color Map Processor",
|
|
tags=["controlnet"],
|
|
category="controlnet",
|
|
version="1.2.3",
|
|
)
|
|
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Generates a color map from the provided image"""
|
|
|
|
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
np_image = np.array(image, dtype=np.uint8)
|
|
height, width = np_image.shape[:2]
|
|
|
|
width_tile_size = min(self.color_map_tile_size, width)
|
|
height_tile_size = min(self.color_map_tile_size, height)
|
|
|
|
color_map = cv2.resize(
|
|
np_image,
|
|
(width // width_tile_size, height // height_tile_size),
|
|
interpolation=cv2.INTER_CUBIC,
|
|
)
|
|
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
|
|
color_map = Image.fromarray(color_map)
|
|
return color_map
|
|
|
|
|
|
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
|
|
DEPTH_ANYTHING_MODELS = {
|
|
"large": "LiheYoung/depth-anything-large-hf",
|
|
"base": "LiheYoung/depth-anything-base-hf",
|
|
"small": "depth-anything/Depth-Anything-V2-Small-hf",
|
|
}
|
|
|
|
|
|
@invocation(
|
|
"depth_anything_image_processor",
|
|
title="Depth Anything Processor",
|
|
tags=["controlnet", "depth", "depth anything"],
|
|
category="controlnet",
|
|
version="1.1.3",
|
|
)
|
|
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Generates a depth map based on the Depth Anything algorithm"""
|
|
|
|
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
|
|
default="small", description="The size of the depth model to use"
|
|
)
|
|
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
depth_anything_pipeline = pipeline(task="depth-estimation", model=DEPTH_ANYTHING_MODELS[self.model_size])
|
|
depth_map = depth_anything_pipeline(image)["depth"]
|
|
return depth_map
|
|
|
|
|
|
@invocation(
|
|
"dw_openpose_image_processor",
|
|
title="DW Openpose Image Processor",
|
|
tags=["controlnet", "dwpose", "openpose"],
|
|
category="controlnet",
|
|
version="1.1.1",
|
|
)
|
|
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
|
"""Generates an openpose pose from an image using DWPose"""
|
|
|
|
draw_body: bool = InputField(default=True)
|
|
draw_face: bool = InputField(default=False)
|
|
draw_hands: bool = InputField(default=False)
|
|
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
|
|
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
|
onnx_det = self._context.models.download_and_cache_model(DWPOSE_MODELS["yolox_l.onnx"])
|
|
onnx_pose = self._context.models.download_and_cache_model(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
|
|
|
|
dw_openpose = DWOpenposeDetector(onnx_det=onnx_det, onnx_pose=onnx_pose)
|
|
processed_image = dw_openpose(
|
|
image,
|
|
draw_face=self.draw_face,
|
|
draw_hands=self.draw_hands,
|
|
draw_body=self.draw_body,
|
|
resolution=self.image_resolution,
|
|
)
|
|
return processed_image
|
|
|
|
|
|
@invocation(
|
|
"heuristic_resize",
|
|
title="Heuristic Resize",
|
|
tags=["image, controlnet"],
|
|
category="image",
|
|
version="1.0.1",
|
|
classification=Classification.Prototype,
|
|
)
|
|
class HeuristicResizeInvocation(BaseInvocation):
|
|
"""Resize an image using a heuristic method. Preserves edge maps."""
|
|
|
|
image: ImageField = InputField(description="The image to resize")
|
|
width: int = InputField(default=512, ge=1, description="The width to resize to (px)")
|
|
height: int = InputField(default=512, ge=1, description="The height to resize to (px)")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.images.get_pil(self.image.image_name, "RGB")
|
|
np_img = pil_to_np(image)
|
|
np_resized = heuristic_resize(np_img, (self.width, self.height))
|
|
resized = np_to_pil(np_resized)
|
|
image_dto = context.images.save(image=resized)
|
|
return ImageOutput.build(image_dto)
|