InvokeAI/ldm/dream/server.py
2022-08-29 16:27:44 -07:00

166 lines
7.4 KiB
Python

import json
import base64
import mimetypes
import os
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
from ldm.dream.pngwriter import PngWriter
class DreamServer(BaseHTTPRequestHandler):
model = None
def do_GET(self):
if self.path == "/":
self.send_response(200)
self.send_header("Content-type", "text/html")
self.end_headers()
with open("./static/dream_web/index.html", "rb") as content:
self.wfile.write(content.read())
elif self.path == "/config.js":
# unfortunately this import can't be at the top level, since that would cause a circular import
from ldm.gfpgan.gfpgan_tools import gfpgan_model_exists
self.send_response(200)
self.send_header("Content-type", "application/javascript")
self.end_headers()
config = {
'gfpgan_model_exists': gfpgan_model_exists
}
self.wfile.write(bytes("let config = " + json.dumps(config) + ";\n", "utf-8"))
else:
path = "." + self.path
cwd = os.path.realpath(os.getcwd())
is_in_cwd = os.path.commonprefix((os.path.realpath(path), cwd)) == cwd
if not (is_in_cwd and os.path.exists(path)):
self.send_response(404)
return
mime_type = mimetypes.guess_type(path)[0]
if mime_type is not None:
self.send_response(200)
self.send_header("Content-type", mime_type)
self.end_headers()
with open("." + self.path, "rb") as content:
self.wfile.write(content.read())
else:
self.send_response(404)
def do_POST(self):
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
# unfortunately this import can't be at the top level, since that would cause a circular import
from ldm.gfpgan.gfpgan_tools import gfpgan_model_exists
content_length = int(self.headers['Content-Length'])
post_data = json.loads(self.rfile.read(content_length))
prompt = post_data['prompt']
initimg = post_data['initimg']
iterations = int(post_data['iterations'])
steps = int(post_data['steps'])
width = int(post_data['width'])
height = int(post_data['height'])
cfgscale = float(post_data['cfgscale'])
sampler_name = post_data['sampler']
gfpgan_strength = float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0
upscale_level = post_data['upscale_level']
upscale_strength = post_data['upscale_strength']
upscale = [int(upscale_level),float(upscale_strength)] if upscale_level != '' else None
seed = None if int(post_data['seed']) == -1 else int(post_data['seed'])
print(f"Request to generate with prompt: {prompt}")
# In order to handle upscaled images, the PngWriter needs to maintain state
# across images generated by each call to prompt2img(), so we define it in
# the outer scope of image_done()
config = post_data.copy() # Shallow copy
config['initimg'] = ''
images_generated = 0 # helps keep track of when upscaling is started
images_upscaled = 0 # helps keep track of when upscaling is completed
pngwriter = PngWriter(
"./outputs/img-samples/", config['prompt'], 1
)
# if upscaling is requested, then this will be called twice, once when
# the images are first generated, and then again when after upscaling
# is complete. The upscaling replaces the original file, so the second
# entry should not be inserted into the image list.
def image_done(image, seed, upscaled=False):
pngwriter.write_image(image, seed, upscaled)
# Append post_data to log, but only once!
if not upscaled:
current_image = pngwriter.files_written[-1]
with open("./outputs/img-samples/dream_web_log.txt", "a") as log:
log.write(f"{current_image[0]}: {json.dumps(config)}\n")
self.wfile.write(bytes(json.dumps(
{'event':'result', 'files':current_image, 'config':config}
) + '\n',"utf-8"))
# control state of the "postprocessing..." message
upscaling_requested = upscale or gfpgan_strength>0
nonlocal images_generated # NB: Is this bad python style? It is typical usage in a perl closure.
nonlocal images_upscaled # NB: Is this bad python style? It is typical usage in a perl closure.
if upscaled:
images_upscaled += 1
else:
images_generated +=1
if upscaling_requested:
action = None
if images_generated >= iterations:
if images_upscaled < iterations:
action = 'upscaling-started'
else:
action = 'upscaling-done'
if action:
x = images_upscaled+1
self.wfile.write(bytes(json.dumps(
{'event':action,'processed_file_cnt':f'{x}/{iterations}'}
) + '\n',"utf-8"))
def image_progress(image, step):
self.wfile.write(bytes(json.dumps(
{'event':'step', 'step':step}
) + '\n',"utf-8"))
if initimg is None:
# Run txt2img
self.model.prompt2image(prompt,
iterations=iterations,
cfg_scale = cfgscale,
width = width,
height = height,
seed = seed,
steps = steps,
gfpgan_strength = gfpgan_strength,
upscale = upscale,
sampler_name = sampler_name,
step_callback=image_progress,
image_callback=image_done)
else:
# Decode initimg as base64 to temp file
with open("./img2img-tmp.png", "wb") as f:
initimg = initimg.split(",")[1] # Ignore mime type
f.write(base64.b64decode(initimg))
# Run img2img
self.model.prompt2image(prompt,
init_img = "./img2img-tmp.png",
iterations = iterations,
cfg_scale = cfgscale,
seed = seed,
steps = steps,
sampler_name = sampler_name,
gfpgan_strength=gfpgan_strength,
upscale = upscale,
step_callback=image_progress,
image_callback=image_done)
# Remove the temp file
os.remove("./img2img-tmp.png")
print(f"Prompt generated!")
class ThreadingDreamServer(ThreadingHTTPServer):
def __init__(self, server_address):
super(ThreadingDreamServer, self).__init__(server_address, DreamServer)