InvokeAI/invokeai/backend/prompting/conditioning.py
2023-03-08 20:45:01 +01:00

336 lines
12 KiB
Python

"""
This module handles the generation of the conditioning tensors.
Useful function exports:
get_uc_and_c_and_ec() get the conditioned and unconditioned latent, and edited conditioning if we're doing cross-attention control
"""
import re
from typing import Any, Optional, Union
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment,
PromptParser,
)
from transformers import CLIPTokenizer
from invokeai.backend.globals import Globals
from ..stable_diffusion import InvokeAIDiffuserComponent
from ..util import torch_dtype
def get_tokenizer(model) -> CLIPTokenizer:
# TODO remove legacy ckpt fallback handling
return (
getattr(model, "tokenizer", None) # diffusers
or model.cond_stage_model.tokenizer
) # ldm
def get_text_encoder(model) -> Any:
# TODO remove legacy ckpt fallback handling
return getattr(
model, "text_encoder", None
) or UnsqueezingLDMTransformer( # diffusers
model.cond_stage_model.transformer
) # ldm
class UnsqueezingLDMTransformer:
def __init__(self, ldm_transformer):
self.ldm_transformer = ldm_transformer
@property
def device(self):
return self.ldm_transformer.device
def __call__(self, *args, **kwargs):
insufficiently_unsqueezed_tensor = self.ldm_transformer(*args, **kwargs)
return insufficiently_unsqueezed_tensor.unsqueeze(0)
def get_uc_and_c_and_ec(
prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False
):
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_string
)
tokenizer = get_tokenizer(model)
text_encoder = get_text_encoder(model)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False
)
# get rid of any newline characters
prompt_string = prompt_string.replace("\n", " ")
(
positive_prompt_string,
negative_prompt_string,
) = split_prompt_to_positive_and_negative(prompt_string)
legacy_blend = try_parse_legacy_blend(
positive_prompt_string, skip_normalize_legacy_blend
)
positive_prompt: Union[FlattenedPrompt, Blend]
if legacy_blend is not None:
positive_prompt = legacy_blend
else:
positive_prompt = Compel.parse_prompt_string(positive_prompt_string)
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(
negative_prompt_string
)
if log_tokens or getattr(Globals, "log_tokenization", False):
log_tokenization(positive_prompt, negative_prompt, tokenizer=tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt)
uc, _ = compel.build_conditioning_tensor_for_prompt_object(negative_prompt)
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
tokens_count = get_max_token_count(tokenizer, positive_prompt)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=tokens_count,
cross_attention_control_args=options.get("cross_attention_control", None),
)
return uc, c, ec
def get_prompt_structure(
prompt_string, skip_normalize_legacy_blend: bool = False
) -> (Union[FlattenedPrompt, Blend], FlattenedPrompt):
(
positive_prompt_string,
negative_prompt_string,
) = split_prompt_to_positive_and_negative(prompt_string)
legacy_blend = try_parse_legacy_blend(
positive_prompt_string, skip_normalize_legacy_blend
)
positive_prompt: Union[FlattenedPrompt, Blend]
if legacy_blend is not None:
positive_prompt = legacy_blend
else:
positive_prompt = Compel.parse_prompt_string(positive_prompt_string)
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(
negative_prompt_string
)
return positive_prompt, negative_prompt
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, c, truncate_if_too_long)
for c in blend.prompts
]
)
else:
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def split_prompt_to_positive_and_negative(prompt_string_uncleaned: str):
unconditioned_words = ""
unconditional_regex = r"\[(.*?)\]"
unconditionals = re.findall(unconditional_regex, prompt_string_uncleaned)
if len(unconditionals) > 0:
unconditioned_words = " ".join(unconditionals)
# Remove Unconditioned Words From Prompt
unconditional_regex_compile = re.compile(unconditional_regex)
clean_prompt = unconditional_regex_compile.sub(" ", prompt_string_uncleaned)
prompt_string_cleaned = re.sub(" +", " ", clean_prompt)
else:
prompt_string_cleaned = prompt_string_uncleaned
return prompt_string_cleaned, unconditioned_words
def log_tokenization(
positive_prompt: Union[Blend, FlattenedPrompt],
negative_prompt: Union[Blend, FlattenedPrompt],
tokenizer,
):
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
log_tokenization_for_prompt_object(positive_prompt, tokenizer)
log_tokenization_for_prompt_object(
negative_prompt, tokenizer, display_label_prefix="(negative prompt)"
)
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
weighted_subprompts = split_weighted_subprompts(text, skip_normalize=skip_normalize)
if len(weighted_subprompts) <= 1:
return None
strings = [x[0] for x in weighted_subprompts]
weights = [x[1] for x in weighted_subprompts]
pp = PromptParser()
parsed_conjunctions = [pp.parse_conjunction(x) for x in strings]
flattened_prompts = [x.prompts[0] for x in parsed_conjunctions]
return Blend(
prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize
)
def split_weighted_subprompts(text, skip_normalize=False) -> list:
"""
Legacy blend parsing.
grabs all text up to the first occurrence of ':'
uses the grabbed text as a sub-prompt, and takes the value following ':' as weight
if ':' has no value defined, defaults to 1.0
repeats until no text remaining
"""
prompt_parser = re.compile(
"""
(?P<prompt> # capture group for 'prompt'
(?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:'
) # end 'prompt'
(?: # non-capture group
:+ # match one or more ':' characters
(?P<weight> # capture group for 'weight'
-?\d+(?:\.\d+)? # match positive or negative integer or decimal number
)? # end weight capture group, make optional
\s* # strip spaces after weight
| # OR
$ # else, if no ':' then match end of line
) # end non-capture group
""",
re.VERBOSE,
)
parsed_prompts = [
(match.group("prompt").replace("\\:", ":"), float(match.group("weight") or 1))
for match in re.finditer(prompt_parser, text)
]
if skip_normalize:
return parsed_prompts
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
if weight_sum == 0:
print(
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead."
)
equal_weight = 1 / max(len(parsed_prompts), 1)
return [(x[0], equal_weight) for x in parsed_prompts]
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]