InvokeAI/ldm/models/diffusion/shared_invokeai_diffusion.py

315 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
from dataclasses import dataclass
from math import ceil
from typing import Callable, Optional, Union
import numpy as np
import torch
from ldm.models.diffusion.cross_attention_control import Arguments, \
remove_cross_attention_control, setup_cross_attention_control, Context, get_cross_attention_modules, \
CrossAttentionType
from ldm.models.diffusion.cross_attention_map_saving import AttentionMapSaver
@dataclass(frozen=True)
class ThresholdSettings:
threshold: float
warmup: float
class InvokeAIDiffuserComponent:
'''
The aim of this component is to provide a single place for code that can be applied identically to
all InvokeAI diffusion procedures.
At the moment it includes the following features:
* Cross attention control ("prompt2prompt")
* Hybrid conditioning (used for inpainting)
'''
debug_thresholding = False
class ExtraConditioningInfo:
def __init__(self, tokens_count_including_eos_bos:int, cross_attention_control_args: Optional[Arguments]):
self.tokens_count_including_eos_bos = tokens_count_including_eos_bos
self.cross_attention_control_args = cross_attention_control_args
@property
def wants_cross_attention_control(self):
return self.cross_attention_control_args is not None
def __init__(self, model, model_forward_callback:
Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
):
"""
:param model: the unet model to pass through to cross attention control
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
"""
self.conditioning = None
self.model = model
self.model_forward_callback = model_forward_callback
self.cross_attention_control_context = None
def setup_cross_attention_control(self, conditioning: ExtraConditioningInfo, step_count: int):
self.conditioning = conditioning
self.cross_attention_control_context = Context(
arguments=self.conditioning.cross_attention_control_args,
step_count=step_count
)
setup_cross_attention_control(self.model, self.cross_attention_control_context)
def remove_cross_attention_control(self):
self.conditioning = None
self.cross_attention_control_context = None
remove_cross_attention_control(self.model)
def setup_attention_map_saving(self, saver: AttentionMapSaver):
def callback(slice, dim, offset, slice_size, key):
if dim is not None:
# sliced tokens attention map saving is not implemented
return
saver.add_attention_maps(slice, key)
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for identifier, module in tokens_cross_attention_modules:
key = ('down' if identifier.startswith('down') else
'up' if identifier.startswith('up') else
'mid')
module.set_attention_slice_calculated_callback(
lambda slice, dim, offset, slice_size, key=key: callback(slice, dim, offset, slice_size, key))
def remove_attention_map_saving(self):
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for _, module in tokens_cross_attention_modules:
module.set_attention_slice_calculated_callback(None)
def do_diffusion_step(self, x: torch.Tensor, sigma: torch.Tensor,
unconditioning: Union[torch.Tensor,dict],
conditioning: Union[torch.Tensor,dict],
unconditional_guidance_scale: float,
step_index: Optional[int]=None,
total_step_count: Optional[int]=None,
threshold: Optional[ThresholdSettings]=None,
):
"""
:param x: current latents
:param sigma: aka t, passed to the internal model to control how much denoising will occur
:param unconditioning: embeddings for unconditioned output. for hybrid conditioning this is a dict of tensors [B x 77 x 768], otherwise a single tensor [B x 77 x 768]
:param conditioning: embeddings for conditioned output. for hybrid conditioning this is a dict of tensors [B x 77 x 768], otherwise a single tensor [B x 77 x 768]
:param unconditional_guidance_scale: aka CFG scale, controls how much effect the conditioning tensor has
:param step_index: counts upwards from 0 to (step_count-1) (as passed to setup_cross_attention_control, if using). May be called multiple times for a single step, therefore do not assume that its value will monotically increase. If None, will be estimated by comparing sigma against self.model.sigmas .
:param threshold: threshold to apply after each step
:return: the new latents after applying the model to x using unscaled unconditioning and CFG-scaled conditioning.
"""
cross_attention_control_types_to_do = []
context: Context = self.cross_attention_control_context
if self.cross_attention_control_context is not None:
if step_index is not None and total_step_count is not None:
# 🧨diffusers codepath
percent_through = step_index / total_step_count # will never reach 1.0 - this is deliberate
else:
# legacy compvis codepath
# TODO remove when compvis codepath support is dropped
if step_index is None and sigma is None:
raise ValueError(f"Either step_index or sigma is required when doing cross attention control, but both are None.")
percent_through = self.estimate_percent_through(step_index, sigma)
cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(percent_through)
wants_cross_attention_control = (len(cross_attention_control_types_to_do) > 0)
wants_hybrid_conditioning = isinstance(conditioning, dict)
if wants_hybrid_conditioning:
unconditioned_next_x, conditioned_next_x = self.apply_hybrid_conditioning(x, sigma, unconditioning, conditioning)
elif wants_cross_attention_control:
unconditioned_next_x, conditioned_next_x = self.apply_cross_attention_controlled_conditioning(x, sigma, unconditioning, conditioning, cross_attention_control_types_to_do)
else:
unconditioned_next_x, conditioned_next_x = self.apply_standard_conditioning(x, sigma, unconditioning, conditioning)
combined_next_x = self._combine(unconditioned_next_x, conditioned_next_x, unconditional_guidance_scale)
if threshold:
combined_next_x = self._threshold(threshold.threshold, threshold.warmup, combined_next_x, sigma)
return combined_next_x
# methods below are called from do_diffusion_step and should be considered private to this class.
def apply_standard_conditioning(self, x, sigma, unconditioning, conditioning):
# fast batched path
x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2)
both_conditionings = torch.cat([unconditioning, conditioning])
both_results = self.model_forward_callback(x_twice, sigma_twice, both_conditionings)
unconditioned_next_x, conditioned_next_x = both_results.chunk(2)
if conditioned_next_x.device.type == 'mps':
# prevent a result filled with zeros. seems to be a torch bug.
conditioned_next_x = conditioned_next_x.clone()
return unconditioned_next_x, conditioned_next_x
def apply_hybrid_conditioning(self, x, sigma, unconditioning, conditioning):
assert isinstance(conditioning, dict)
assert isinstance(unconditioning, dict)
x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2)
both_conditionings = dict()
for k in conditioning:
if isinstance(conditioning[k], list):
both_conditionings[k] = [
torch.cat([unconditioning[k][i], conditioning[k][i]])
for i in range(len(conditioning[k]))
]
else:
both_conditionings[k] = torch.cat([unconditioning[k], conditioning[k]])
unconditioned_next_x, conditioned_next_x = self.model_forward_callback(x_twice, sigma_twice, both_conditionings).chunk(2)
return unconditioned_next_x, conditioned_next_x
def apply_cross_attention_controlled_conditioning(self, x:torch.Tensor, sigma, unconditioning, conditioning, cross_attention_control_types_to_do):
# print('pct', percent_through, ': doing cross attention control on', cross_attention_control_types_to_do)
# slower non-batched path (20% slower on mac MPS)
# We are only interested in using attention maps for conditioned_next_x, but batching them with generation of
# unconditioned_next_x causes attention maps to *also* be saved for the unconditioned_next_x.
# This messes app their application later, due to mismatched shape of dim 0 (seems to be 16 for batched vs. 8)
# (For the batched invocation the `wrangler` function gets attention tensor with shape[0]=16,
# representing batched uncond + cond, but then when it comes to applying the saved attention, the
# wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.)
# todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well.
context:Context = self.cross_attention_control_context
try:
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
# process x using the original prompt, saving the attention maps
#print("saving attention maps for", cross_attention_control_types_to_do)
for ca_type in cross_attention_control_types_to_do:
context.request_save_attention_maps(ca_type)
_ = self.model_forward_callback(x, sigma, conditioning)
context.clear_requests(cleanup=False)
# process x again, using the saved attention maps to control where self.edited_conditioning will be applied
#print("applying saved attention maps for", cross_attention_control_types_to_do)
for ca_type in cross_attention_control_types_to_do:
context.request_apply_saved_attention_maps(ca_type)
edited_conditioning = self.conditioning.cross_attention_control_args.edited_conditioning
conditioned_next_x = self.model_forward_callback(x, sigma, edited_conditioning)
context.clear_requests(cleanup=True)
except:
context.clear_requests(cleanup=True)
raise
return unconditioned_next_x, conditioned_next_x
def _combine(self, unconditioned_next_x, conditioned_next_x, guidance_scale):
# to scale how much effect conditioning has, calculate the changes it does and then scale that
scaled_delta = (conditioned_next_x - unconditioned_next_x) * guidance_scale
combined_next_x = unconditioned_next_x + scaled_delta
return combined_next_x
def _threshold(self, threshold, warmup, latents: torch.Tensor, sigma) -> torch.Tensor:
warmup_scale = (1 - sigma.item() / 1000) / warmup if warmup else math.inf
if warmup_scale < 1:
# This arithmetic based on https://github.com/invoke-ai/InvokeAI/pull/395
warming_threshold = 1 + (threshold - 1) * warmup_scale
current_threshold = np.clip(warming_threshold, 1, threshold)
else:
current_threshold = threshold
if current_threshold <= 0:
return latents
maxval = latents.max().item()
minval = latents.min().item()
scale = 0.7 # default value from #395
if self.debug_thresholding:
std, mean = [i.item() for i in torch.std_mean(latents)]
outside = torch.count_nonzero((latents < -current_threshold) | (latents > current_threshold))
print(f"\nThreshold: 𝜎={sigma.item()} threshold={current_threshold:.3f} (of {threshold:.3f})\n"
f" | min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}\n"
f" | {outside / latents.numel() * 100:.2f}% values outside threshold")
if maxval < current_threshold and minval > -current_threshold:
return latents
if maxval > current_threshold:
maxval = np.clip(maxval * scale, 1, current_threshold)
if minval < -current_threshold:
minval = np.clip(minval * scale, -current_threshold, -1)
if self.debug_thresholding:
outside = torch.count_nonzero((latents < minval) | (latents > maxval))
print(f" | min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})\n"
f" | {outside / latents.numel() * 100:.2f}% values will be clamped")
return latents.clamp(minval, maxval)
def estimate_percent_through(self, step_index, sigma):
if step_index is not None and self.cross_attention_control_context is not None:
# percent_through will never reach 1.0 (but this is intended)
return float(step_index) / float(self.cross_attention_control_context.step_count)
# find the best possible index of the current sigma in the sigma sequence
smaller_sigmas = torch.nonzero(self.model.sigmas <= sigma)
sigma_index = smaller_sigmas[-1].item() if smaller_sigmas.shape[0] > 0 else 0
# flip because sigmas[0] is for the fully denoised image
# percent_through must be <1
return 1.0 - float(sigma_index + 1) / float(self.model.sigmas.shape[0])
# print('estimated percent_through', percent_through, 'from sigma', sigma.item())
# todo: make this work
@classmethod
def apply_conjunction(cls, x, t, forward_func, uc, c_or_weighted_c_list, global_guidance_scale):
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2) # aka sigmas
deltas = None
uncond_latents = None
weighted_cond_list = c_or_weighted_c_list if type(c_or_weighted_c_list) is list else [(c_or_weighted_c_list, 1)]
# below is fugly omg
num_actual_conditionings = len(c_or_weighted_c_list)
conditionings = [uc] + [c for c,weight in weighted_cond_list]
weights = [1] + [weight for c,weight in weighted_cond_list]
chunk_count = ceil(len(conditionings)/2)
deltas = None
for chunk_index in range(chunk_count):
offset = chunk_index*2
chunk_size = min(2, len(conditionings)-offset)
if chunk_size == 1:
c_in = conditionings[offset]
latents_a = forward_func(x_in[:-1], t_in[:-1], c_in)
latents_b = None
else:
c_in = torch.cat(conditionings[offset:offset+2])
latents_a, latents_b = forward_func(x_in, t_in, c_in).chunk(2)
# first chunk is guaranteed to be 2 entries: uncond_latents + first conditioining
if chunk_index == 0:
uncond_latents = latents_a
deltas = latents_b - uncond_latents
else:
deltas = torch.cat((deltas, latents_a - uncond_latents))
if latents_b is not None:
deltas = torch.cat((deltas, latents_b - uncond_latents))
# merge the weighted deltas together into a single merged delta
per_delta_weights = torch.tensor(weights[1:], dtype=deltas.dtype, device=deltas.device)
normalize = False
if normalize:
per_delta_weights /= torch.sum(per_delta_weights)
reshaped_weights = per_delta_weights.reshape(per_delta_weights.shape + (1, 1, 1))
deltas_merged = torch.sum(deltas * reshaped_weights, dim=0, keepdim=True)
# old_return_value = super().forward(x, sigma, uncond, cond, cond_scale)
# assert(0 == len(torch.nonzero(old_return_value - (uncond_latents + deltas_merged * cond_scale))))
return uncond_latents + deltas_merged * global_guidance_scale