mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
655 lines
21 KiB
Python
Executable File
655 lines
21 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
|
|
import argparse
|
|
import shlex
|
|
import os
|
|
import re
|
|
import sys
|
|
import copy
|
|
import warnings
|
|
import time
|
|
import ldm.dream.readline
|
|
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
|
from ldm.dream.server import DreamServer, ThreadingDreamServer
|
|
from ldm.dream.image_util import make_grid
|
|
from omegaconf import OmegaConf
|
|
|
|
def main():
|
|
"""Initialize command-line parsers and the diffusion model"""
|
|
arg_parser = create_argv_parser()
|
|
opt = arg_parser.parse_args()
|
|
|
|
if opt.laion400m:
|
|
print('--laion400m flag has been deprecated. Please use --model laion400m instead.')
|
|
sys.exit(-1)
|
|
if opt.weights != 'model':
|
|
print('--weights argument has been deprecated. Please configure ./configs/models.yaml, and call it using --model instead.')
|
|
sys.exit(-1)
|
|
|
|
try:
|
|
models = OmegaConf.load(opt.config)
|
|
width = models[opt.model].width
|
|
height = models[opt.model].height
|
|
config = models[opt.model].config
|
|
weights = models[opt.model].weights
|
|
except (FileNotFoundError, IOError, KeyError) as e:
|
|
print(f'{e}. Aborting.')
|
|
sys.exit(-1)
|
|
|
|
print('* Initializing, be patient...\n')
|
|
sys.path.append('.')
|
|
from pytorch_lightning import logging
|
|
from ldm.generate import Generate
|
|
|
|
# these two lines prevent a horrible warning message from appearing
|
|
# when the frozen CLIP tokenizer is imported
|
|
import transformers
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
# creating a simple text2image object with a handful of
|
|
# defaults passed on the command line.
|
|
# additional parameters will be added (or overriden) during
|
|
# the user input loop
|
|
t2i = Generate(
|
|
width = width,
|
|
height = height,
|
|
sampler_name = opt.sampler_name,
|
|
weights = weights,
|
|
full_precision = opt.full_precision,
|
|
config = config,
|
|
grid = opt.grid,
|
|
# this is solely for recreating the prompt
|
|
seamless = opt.seamless,
|
|
embedding_path = opt.embedding_path,
|
|
device_type = opt.device
|
|
)
|
|
|
|
# make sure the output directory exists
|
|
if not os.path.exists(opt.outdir):
|
|
os.makedirs(opt.outdir)
|
|
|
|
# gets rid of annoying messages about random seed
|
|
logging.getLogger('pytorch_lightning').setLevel(logging.ERROR)
|
|
|
|
# load the infile as a list of lines
|
|
infile = None
|
|
if opt.infile:
|
|
try:
|
|
if os.path.isfile(opt.infile):
|
|
infile = open(opt.infile, 'r', encoding='utf-8')
|
|
elif opt.infile == '-': # stdin
|
|
infile = sys.stdin
|
|
else:
|
|
raise FileNotFoundError(f'{opt.infile} not found.')
|
|
except (FileNotFoundError, IOError) as e:
|
|
print(f'{e}. Aborting.')
|
|
sys.exit(-1)
|
|
|
|
if opt.seamless:
|
|
print(">> changed to seamless tiling mode")
|
|
|
|
# preload the model
|
|
t2i.load_model()
|
|
|
|
if not infile:
|
|
print(
|
|
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)"
|
|
)
|
|
|
|
cmd_parser = create_cmd_parser()
|
|
if opt.web:
|
|
dream_server_loop(t2i, opt.host, opt.port, opt.outdir)
|
|
else:
|
|
main_loop(t2i, opt.outdir, opt.prompt_as_dir, cmd_parser, infile)
|
|
|
|
|
|
def main_loop(t2i, outdir, prompt_as_dir, parser, infile):
|
|
"""prompt/read/execute loop"""
|
|
done = False
|
|
last_seeds = []
|
|
path_filter = re.compile(r'[<>:"/\\|?*]')
|
|
|
|
# os.pathconf is not available on Windows
|
|
if hasattr(os, 'pathconf'):
|
|
path_max = os.pathconf(outdir, 'PC_PATH_MAX')
|
|
name_max = os.pathconf(outdir, 'PC_NAME_MAX')
|
|
else:
|
|
path_max = 260
|
|
name_max = 255
|
|
|
|
while not done:
|
|
try:
|
|
command = get_next_command(infile)
|
|
except EOFError:
|
|
done = True
|
|
break
|
|
|
|
# skip empty lines
|
|
if not command.strip():
|
|
continue
|
|
|
|
if command.startswith(('#', '//')):
|
|
continue
|
|
|
|
# before splitting, escape single quotes so as not to mess
|
|
# up the parser
|
|
command = command.replace("'", "\\'")
|
|
|
|
try:
|
|
elements = shlex.split(command)
|
|
except ValueError as e:
|
|
print(str(e))
|
|
continue
|
|
|
|
if elements[0] == 'q':
|
|
done = True
|
|
break
|
|
|
|
if elements[0].startswith(
|
|
'!dream'
|
|
): # in case a stored prompt still contains the !dream command
|
|
elements.pop(0)
|
|
|
|
# rearrange the arguments to mimic how it works in the Dream bot.
|
|
switches = ['']
|
|
switches_started = False
|
|
|
|
for el in elements:
|
|
if el[0] == '-' and not switches_started:
|
|
switches_started = True
|
|
if switches_started:
|
|
switches.append(el)
|
|
else:
|
|
switches[0] += el
|
|
switches[0] += ' '
|
|
switches[0] = switches[0][: len(switches[0]) - 1]
|
|
|
|
try:
|
|
opt = parser.parse_args(switches)
|
|
except SystemExit:
|
|
parser.print_help()
|
|
continue
|
|
if len(opt.prompt) == 0:
|
|
print('Try again with a prompt!')
|
|
continue
|
|
if opt.seed is not None and opt.seed < 0: # retrieve previous value!
|
|
try:
|
|
opt.seed = last_seeds[opt.seed]
|
|
print(f'reusing previous seed {opt.seed}')
|
|
except IndexError:
|
|
print(f'No previous seed at position {opt.seed} found')
|
|
opt.seed = None
|
|
|
|
do_grid = opt.grid or t2i.grid
|
|
|
|
if opt.with_variations is not None:
|
|
# shotgun parsing, woo
|
|
parts = []
|
|
broken = False # python doesn't have labeled loops...
|
|
for part in opt.with_variations.split(','):
|
|
seed_and_weight = part.split(':')
|
|
if len(seed_and_weight) != 2:
|
|
print(f'could not parse with_variation part "{part}"')
|
|
broken = True
|
|
break
|
|
try:
|
|
seed = int(seed_and_weight[0])
|
|
weight = float(seed_and_weight[1])
|
|
except ValueError:
|
|
print(f'could not parse with_variation part "{part}"')
|
|
broken = True
|
|
break
|
|
parts.append([seed, weight])
|
|
if broken:
|
|
continue
|
|
if len(parts) > 0:
|
|
opt.with_variations = parts
|
|
else:
|
|
opt.with_variations = None
|
|
|
|
if opt.outdir:
|
|
if not os.path.exists(opt.outdir):
|
|
os.makedirs(opt.outdir)
|
|
current_outdir = opt.outdir
|
|
elif prompt_as_dir:
|
|
# sanitize the prompt to a valid folder name
|
|
subdir = path_filter.sub('_', opt.prompt)[:name_max].rstrip(' .')
|
|
|
|
# truncate path to maximum allowed length
|
|
# 27 is the length of '######.##########.##.png', plus two separators and a NUL
|
|
subdir = subdir[:(path_max - 27 - len(os.path.abspath(outdir)))]
|
|
current_outdir = os.path.join(outdir, subdir)
|
|
|
|
print ('Writing files to directory: "' + current_outdir + '"')
|
|
|
|
# make sure the output directory exists
|
|
if not os.path.exists(current_outdir):
|
|
os.makedirs(current_outdir)
|
|
else:
|
|
current_outdir = outdir
|
|
|
|
# Here is where the images are actually generated!
|
|
try:
|
|
file_writer = PngWriter(current_outdir)
|
|
prefix = file_writer.unique_prefix()
|
|
seeds = set()
|
|
results = [] # list of filename, prompt pairs
|
|
grid_images = dict() # seed -> Image, only used if `do_grid`
|
|
def image_writer(image, seed, upscaled=False):
|
|
if do_grid:
|
|
grid_images[seed] = image
|
|
else:
|
|
if upscaled and opt.save_original:
|
|
filename = f'{prefix}.{seed}.postprocessed.png'
|
|
else:
|
|
filename = f'{prefix}.{seed}.png'
|
|
if opt.variation_amount > 0:
|
|
iter_opt = argparse.Namespace(**vars(opt)) # copy
|
|
this_variation = [[seed, opt.variation_amount]]
|
|
if opt.with_variations is None:
|
|
iter_opt.with_variations = this_variation
|
|
else:
|
|
iter_opt.with_variations = opt.with_variations + this_variation
|
|
iter_opt.variation_amount = 0
|
|
normalized_prompt = PromptFormatter(t2i, iter_opt).normalize_prompt()
|
|
metadata_prompt = f'{normalized_prompt} -S{iter_opt.seed}'
|
|
elif opt.with_variations is not None:
|
|
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
|
metadata_prompt = f'{normalized_prompt} -S{opt.seed}' # use the original seed - the per-iteration value is the last variation-seed
|
|
else:
|
|
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
|
metadata_prompt = f'{normalized_prompt} -S{seed}'
|
|
path = file_writer.save_image_and_prompt_to_png(image, metadata_prompt, filename)
|
|
if (not upscaled) or opt.save_original:
|
|
# only append to results if we didn't overwrite an earlier output
|
|
results.append([path, metadata_prompt])
|
|
|
|
seeds.add(seed)
|
|
|
|
t2i.prompt2image(image_callback=image_writer, **vars(opt))
|
|
|
|
if do_grid and len(grid_images) > 0:
|
|
grid_img = make_grid(list(grid_images.values()))
|
|
first_seed = next(iter(seeds))
|
|
filename = f'{prefix}.{first_seed}.png'
|
|
# TODO better metadata for grid images
|
|
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
|
metadata_prompt = f'{normalized_prompt} -S{first_seed} --grid -N{len(grid_images)}'
|
|
path = file_writer.save_image_and_prompt_to_png(
|
|
grid_img, metadata_prompt, filename
|
|
)
|
|
results = [[path, metadata_prompt]]
|
|
|
|
last_seeds = list(seeds)
|
|
|
|
except AssertionError as e:
|
|
print(e)
|
|
continue
|
|
|
|
except OSError as e:
|
|
print(e)
|
|
continue
|
|
|
|
print('Outputs:')
|
|
log_path = os.path.join(current_outdir, 'dream_log.txt')
|
|
write_log_message(results, log_path)
|
|
|
|
print('goodbye!')
|
|
|
|
|
|
def get_next_command(infile=None) -> str: #command string
|
|
if infile is None:
|
|
command = input('dream> ')
|
|
else:
|
|
command = infile.readline()
|
|
if not command:
|
|
raise EOFError
|
|
else:
|
|
command = command.strip()
|
|
print(f'#{command}')
|
|
return command
|
|
|
|
def dream_server_loop(t2i, host, port, outdir):
|
|
print('\n* --web was specified, starting web server...')
|
|
# Change working directory to the stable-diffusion directory
|
|
os.chdir(
|
|
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
|
)
|
|
|
|
# Start server
|
|
DreamServer.model = t2i
|
|
DreamServer.outdir = outdir
|
|
dream_server = ThreadingDreamServer((host, port))
|
|
print(">> Started Stable Diffusion dream server!")
|
|
if host == '0.0.0.0':
|
|
print(f"Point your browser at http://localhost:{port} or use the host's DNS name or IP address.")
|
|
else:
|
|
print(">> Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address.")
|
|
print(f">> Point your browser at http://{host}:{port}.")
|
|
|
|
try:
|
|
dream_server.serve_forever()
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
dream_server.server_close()
|
|
|
|
|
|
def write_log_message(results, log_path):
|
|
"""logs the name of the output image, prompt, and prompt args to the terminal and log file"""
|
|
log_lines = [f'{path}: {prompt}\n' for path, prompt in results]
|
|
print(*log_lines, sep='')
|
|
|
|
with open(log_path, 'a', encoding='utf-8') as file:
|
|
file.writelines(log_lines)
|
|
|
|
|
|
SAMPLER_CHOICES=[
|
|
'ddim',
|
|
'k_dpm_2_a',
|
|
'k_dpm_2',
|
|
'k_euler_a',
|
|
'k_euler',
|
|
'k_heun',
|
|
'k_lms',
|
|
'plms',
|
|
]
|
|
|
|
def create_argv_parser():
|
|
parser = argparse.ArgumentParser(
|
|
description="""Generate images using Stable Diffusion.
|
|
Use --web to launch the web interface.
|
|
Use --from_file to load prompts from a file path or standard input ("-").
|
|
Otherwise you will be dropped into an interactive command prompt (type -h for help.)
|
|
Other command-line arguments are defaults that can usually be overridden
|
|
prompt the command prompt.
|
|
"""
|
|
)
|
|
parser.add_argument(
|
|
'--laion400m',
|
|
'--latent_diffusion',
|
|
'-l',
|
|
dest='laion400m',
|
|
action='store_true',
|
|
help='Fallback to the latent diffusion (laion400m) weights and config',
|
|
)
|
|
parser.add_argument(
|
|
'--from_file',
|
|
dest='infile',
|
|
type=str,
|
|
help='If specified, load prompts from this file',
|
|
)
|
|
parser.add_argument(
|
|
'-n',
|
|
'--iterations',
|
|
type=int,
|
|
default=1,
|
|
help='Number of images to generate',
|
|
)
|
|
parser.add_argument(
|
|
'-F',
|
|
'--full_precision',
|
|
dest='full_precision',
|
|
action='store_true',
|
|
help='Use more memory-intensive full precision math for calculations',
|
|
)
|
|
parser.add_argument(
|
|
'-g',
|
|
'--grid',
|
|
action='store_true',
|
|
help='Generate a grid instead of individual images',
|
|
)
|
|
parser.add_argument(
|
|
'-A',
|
|
'-m',
|
|
'--sampler',
|
|
dest='sampler_name',
|
|
choices=SAMPLER_CHOICES,
|
|
metavar='SAMPLER_NAME',
|
|
default='k_lms',
|
|
help=f'Set the initial sampler. Default: k_lms. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
|
)
|
|
parser.add_argument(
|
|
'--outdir',
|
|
'-o',
|
|
type=str,
|
|
default='outputs/img-samples',
|
|
help='Directory to save generated images and a log of prompts and seeds. Default: outputs/img-samples',
|
|
)
|
|
parser.add_argument(
|
|
'--seamless',
|
|
action='store_true',
|
|
help='Change the model to seamless tiling (circular) mode',
|
|
)
|
|
parser.add_argument(
|
|
'--embedding_path',
|
|
type=str,
|
|
help='Path to a pre-trained embedding manager checkpoint - can only be set on command line',
|
|
)
|
|
parser.add_argument(
|
|
'--prompt_as_dir',
|
|
'-p',
|
|
action='store_true',
|
|
help='Place images in subdirectories named after the prompt.',
|
|
)
|
|
# GFPGAN related args
|
|
parser.add_argument(
|
|
'--gfpgan_bg_upsampler',
|
|
type=str,
|
|
default='realesrgan',
|
|
help='Background upsampler. Default: realesrgan. Options: realesrgan, none.',
|
|
|
|
)
|
|
parser.add_argument(
|
|
'--gfpgan_bg_tile',
|
|
type=int,
|
|
default=400,
|
|
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.',
|
|
)
|
|
parser.add_argument(
|
|
'--gfpgan_model_path',
|
|
type=str,
|
|
default='experiments/pretrained_models/GFPGANv1.3.pth',
|
|
help='Indicates the path to the GFPGAN model, relative to --gfpgan_dir.',
|
|
)
|
|
parser.add_argument(
|
|
'--gfpgan_dir',
|
|
type=str,
|
|
default='../GFPGAN',
|
|
help='Indicates the directory containing the GFPGAN code.',
|
|
)
|
|
parser.add_argument(
|
|
'--web',
|
|
dest='web',
|
|
action='store_true',
|
|
help='Start in web server mode.',
|
|
)
|
|
parser.add_argument(
|
|
'--host',
|
|
type=str,
|
|
default='127.0.0.1',
|
|
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.'
|
|
)
|
|
parser.add_argument(
|
|
'--port',
|
|
type=int,
|
|
default='9090',
|
|
help='Web server: Port to listen on'
|
|
)
|
|
parser.add_argument(
|
|
'--weights',
|
|
default='model',
|
|
help='Indicates the Stable Diffusion model to use.',
|
|
)
|
|
parser.add_argument(
|
|
'--device',
|
|
'-d',
|
|
type=str,
|
|
default='cuda',
|
|
help="device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if available"
|
|
)
|
|
parser.add_argument(
|
|
'--model',
|
|
default='stable-diffusion-1.4',
|
|
help='Indicates which diffusion model to load. (currently "stable-diffusion-1.4" (default) or "laion400m")',
|
|
)
|
|
parser.add_argument(
|
|
'--config',
|
|
default ='configs/models.yaml',
|
|
help ='Path to configuration file for alternate models.',
|
|
)
|
|
return parser
|
|
|
|
|
|
def create_cmd_parser():
|
|
parser = argparse.ArgumentParser(
|
|
description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12'
|
|
)
|
|
parser.add_argument('prompt')
|
|
parser.add_argument('-s', '--steps', type=int, help='Number of steps')
|
|
parser.add_argument(
|
|
'-S',
|
|
'--seed',
|
|
type=int,
|
|
help='Image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
|
|
)
|
|
parser.add_argument(
|
|
'-n',
|
|
'--iterations',
|
|
type=int,
|
|
default=1,
|
|
help='Number of samplings to perform (slower, but will provide seeds for individual images)',
|
|
)
|
|
parser.add_argument(
|
|
'-W', '--width', type=int, help='Image width, multiple of 64'
|
|
)
|
|
parser.add_argument(
|
|
'-H', '--height', type=int, help='Image height, multiple of 64'
|
|
)
|
|
parser.add_argument(
|
|
'-C',
|
|
'--cfg_scale',
|
|
default=7.5,
|
|
type=float,
|
|
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
|
|
)
|
|
parser.add_argument(
|
|
'-g', '--grid', action='store_true', help='generate a grid'
|
|
)
|
|
parser.add_argument(
|
|
'--outdir',
|
|
'-o',
|
|
type=str,
|
|
default=None,
|
|
help='Directory to save generated images and a log of prompts and seeds',
|
|
)
|
|
parser.add_argument(
|
|
'--seamless',
|
|
action='store_true',
|
|
help='Change the model to seamless tiling (circular) mode',
|
|
)
|
|
parser.add_argument(
|
|
'-i',
|
|
'--individual',
|
|
action='store_true',
|
|
help='Generate individual files (default)',
|
|
)
|
|
parser.add_argument(
|
|
'-I',
|
|
'--init_img',
|
|
type=str,
|
|
help='Path to input image for img2img mode (supersedes width and height)',
|
|
)
|
|
parser.add_argument(
|
|
'-M',
|
|
'--mask',
|
|
type=str,
|
|
help='Path to inpainting mask; transparent areas will be painted over',
|
|
)
|
|
parser.add_argument(
|
|
'--invert_mask',
|
|
action='store_true',
|
|
help='Invert the inpainting mask; opaque areas will be painted over',
|
|
)
|
|
parser.add_argument(
|
|
'-T',
|
|
'-fit',
|
|
'--fit',
|
|
action='store_true',
|
|
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
|
|
)
|
|
parser.add_argument(
|
|
'-f',
|
|
'--strength',
|
|
default=0.75,
|
|
type=float,
|
|
help='Strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
|
|
)
|
|
parser.add_argument(
|
|
'-G',
|
|
'--gfpgan_strength',
|
|
default=0,
|
|
type=float,
|
|
help='The strength at which to apply the GFPGAN model to the result, in order to improve faces.',
|
|
)
|
|
parser.add_argument(
|
|
'-U',
|
|
'--upscale',
|
|
nargs='+',
|
|
default=None,
|
|
type=float,
|
|
help='Scale factor (2, 4) for upscaling followed by upscaling strength (0-1.0). If strength not specified, defaults to 0.75'
|
|
)
|
|
parser.add_argument(
|
|
'-save_orig',
|
|
'--save_original',
|
|
action='store_true',
|
|
help='Save original. Use it when upscaling to save both versions.',
|
|
)
|
|
# variants is going to be superseded by a generalized "prompt-morph" function
|
|
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
|
|
parser.add_argument(
|
|
'-x',
|
|
'--skip_normalize',
|
|
action='store_true',
|
|
help='Skip subprompt weight normalization',
|
|
)
|
|
parser.add_argument(
|
|
'-A',
|
|
'-m',
|
|
'--sampler',
|
|
dest='sampler_name',
|
|
default=None,
|
|
type=str,
|
|
choices=SAMPLER_CHOICES,
|
|
metavar='SAMPLER_NAME',
|
|
help=f'Switch to a different sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
|
)
|
|
parser.add_argument(
|
|
'-t',
|
|
'--log_tokenization',
|
|
action='store_true',
|
|
help='shows how the prompt is split into tokens'
|
|
)
|
|
parser.add_argument(
|
|
'-v',
|
|
'--variation_amount',
|
|
default=0.0,
|
|
type=float,
|
|
help='If > 0, generates variations on the initial seed instead of random seeds per iteration. Must be between 0 and 1. Higher values will be more different.'
|
|
)
|
|
parser.add_argument(
|
|
'-V',
|
|
'--with_variations',
|
|
default=None,
|
|
type=str,
|
|
help='list of variations to apply, in the format `seed:weight,seed:weight,...'
|
|
)
|
|
return parser
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|