InvokeAI/scripts/dream.py
2022-08-25 22:57:30 -04:00

366 lines
15 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
import argparse
import shlex
import os
import sys
import copy
from ldm.dream_util import Completer,PngWriter,PromptFormatter
debugging = False
def main():
''' Initialize command-line parsers and the diffusion model '''
arg_parser = create_argv_parser()
opt = arg_parser.parse_args()
if opt.laion400m:
# defaults suitable to the older latent diffusion weights
width = 256
height = 256
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
weights = "models/ldm/text2img-large/model.ckpt"
else:
# some defaults suitable for stable diffusion weights
width = 512
height = 512
config = "configs/stable-diffusion/v1-inference.yaml"
weights = "models/ldm/stable-diffusion-v1/model.ckpt"
print("* Initializing, be patient...\n")
sys.path.append('.')
from pytorch_lightning import logging
from ldm.simplet2i import T2I
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# creating a simple text2image object with a handful of
# defaults passed on the command line.
# additional parameters will be added (or overriden) during
# the user input loop
t2i = T2I(width=width,
height=height,
sampler_name=opt.sampler_name,
weights=weights,
full_precision=opt.full_precision,
config=config,
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
embedding_path=opt.embedding_path,
device=opt.device
)
# make sure the output directory exists
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
# gets rid of annoying messages about random seed
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
infile = None
try:
if opt.infile is not None:
infile = open(opt.infile,'r')
except FileNotFoundError as e:
print(e)
exit(-1)
# preload the model
t2i.load_model()
# load GFPGAN if requested
if opt.use_gfpgan:
print("\n* --gfpgan was specified, loading gfpgan...")
try:
model_path = os.path.join(opt.gfpgan_dir, opt.gfpgan_model_path)
if not os.path.isfile(model_path):
raise Exception("GFPGAN model not found at path "+model_path)
sys.path.append(os.path.abspath(opt.gfpgan_dir))
from gfpgan import GFPGANer
bg_upsampler = None
if opt.gfpgan_bg_upsampler is not None:
bg_upsampler = load_gfpgan_bg_upsampler(opt.gfpgan_bg_upsampler, opt.gfpgan_bg_tile)
t2i.gfpgan = GFPGANer(model_path=model_path, upscale=opt.gfpgan_upscale, arch='clean', channel_multiplier=2, bg_upsampler=bg_upsampler)
except Exception:
import traceback
print("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print("\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)...")
log_path = os.path.join(opt.outdir,'dream_log.txt')
with open(log_path,'a') as log:
cmd_parser = create_cmd_parser()
main_loop(t2i,opt.outdir,cmd_parser,log,infile)
log.close()
if infile:
infile.close()
def main_loop(t2i,outdir,parser,log,infile):
''' prompt/read/execute loop '''
done = False
while not done:
try:
command = infile.readline() if infile else input("dream> ")
except EOFError:
done = True
break
if infile and len(command)==0:
done = True
break
if command.startswith(('#','//')):
continue
# before splitting, escape single quotes so as not to mess
# up the parser
command = command.replace("'","\\'")
try:
elements = shlex.split(command)
except ValueError as e:
print(str(e))
continue
if len(elements)==0:
continue
if elements[0]=='q':
done = True
break
if elements[0]=='cd' and len(elements)>1:
if os.path.exists(elements[1]):
print(f"setting image output directory to {elements[1]}")
outdir=elements[1]
else:
print(f"directory {elements[1]} does not exist")
continue
if elements[0]=='pwd':
print(f"current output directory is {outdir}")
continue
if elements[0].startswith('!dream'): # in case a stored prompt still contains the !dream command
elements.pop(0)
# rearrange the arguments to mimic how it works in the Dream bot.
switches = ['']
switches_started = False
for el in elements:
if el[0]=='-' and not switches_started:
switches_started = True
if switches_started:
switches.append(el)
else:
switches[0] += el
switches[0] += ' '
switches[0] = switches[0][:len(switches[0])-1]
try:
opt = parser.parse_args(switches)
except SystemExit:
parser.print_help()
continue
if len(opt.prompt)==0:
print("Try again with a prompt!")
continue
normalized_prompt = PromptFormatter(t2i,opt).normalize_prompt()
individual_images = not opt.grid
try:
file_writer = PngWriter(outdir,normalized_prompt,opt.batch_size)
callback = file_writer.write_image if individual_images else None
image_list = t2i.prompt2image(image_callback=callback,**vars(opt))
results = file_writer.files_written if individual_images else image_list
if opt.grid and len(results) > 0:
grid_img = file_writer.make_grid([r[0] for r in results])
filename = file_writer.unique_filename(results[0][1])
seeds = [a[1] for a in results]
results = [[filename,seeds]]
metadata_prompt = f'{normalized_prompt} -S{results[0][1]}'
file_writer.save_image_and_prompt_to_png(grid_img,metadata_prompt,filename)
except AssertionError as e:
print(e)
continue
except OSError as e:
print(e)
continue
print("Outputs:")
write_log_message(t2i,normalized_prompt,results,log)
print("goodbye!")
def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
import torch
if bg_upsampler == 'realesrgan':
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
'If you really want to use it, please modify the corresponding codes.')
bg_upsampler = None
else:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
bg_upsampler = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=model,
tile=bg_tile,
tile_pad=10,
pre_pad=0,
half=True) # need to set False in CPU mode
else:
bg_upsampler = None
return bg_upsampler
# variant generation is going to be superseded by a generalized
# "prompt-morph" functionality
# def generate_variants(t2i,outdir,opt,previous_gens):
# variants = []
# print(f"Generating {opt.variants} variant(s)...")
# newopt = copy.deepcopy(opt)
# newopt.iterations = 1
# newopt.variants = None
# for r in previous_gens:
# newopt.init_img = r[0]
# prompt = PromptFormatter(t2i,newopt).normalize_prompt()
# print(f"] generating variant for {newopt.init_img}")
# for j in range(0,opt.variants):
# try:
# file_writer = PngWriter(outdir,prompt,newopt.batch_size)
# callback = file_writer.write_image
# t2i.prompt2image(image_callback=callback,**vars(newopt))
# results = file_writer.files_written
# variants.append([prompt,results])
# except AssertionError as e:
# print(e)
# continue
# print(f'{opt.variants} variants generated')
# return variants
def write_log_message(t2i,prompt,results,logfile):
''' logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata'''
last_seed = None
img_num = 1
seenit = {}
for r in results:
seed = r[1]
log_message = (f'{r[0]}: {prompt} -S{seed}')
print(log_message)
logfile.write(log_message+"\n")
logfile.flush()
def create_argv_parser():
parser = argparse.ArgumentParser(description="Parse script's command line args")
parser.add_argument("--laion400m",
"--latent_diffusion",
"-l",
dest='laion400m',
action='store_true',
help="fallback to the latent diffusion (laion400m) weights and config")
parser.add_argument("--from_file",
dest='infile',
type=str,
help="if specified, load prompts from this file")
parser.add_argument('-n','--iterations',
type=int,
default=1,
help="number of images to generate")
parser.add_argument('-F','--full_precision',
dest='full_precision',
action='store_true',
help="use slower full precision math for calculations")
parser.add_argument('--sampler','-m',
dest="sampler_name",
choices=['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'],
default='k_lms',
help="which sampler to use (k_lms) - can only be set on command line")
parser.add_argument('--outdir',
'-o',
type=str,
default="outputs/img-samples",
help="directory in which to place generated images and a log of prompts and seeds")
parser.add_argument('--embedding_path',
type=str,
help="Path to a pre-trained embedding manager checkpoint - can only be set on command line")
parser.add_argument('--device',
'-d',
type=str,
default="cuda",
help="device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible")
# GFPGAN related args
parser.add_argument('--gfpgan',
dest='use_gfpgan',
action='store_true',
help="load gfpgan for use in the dreambot. Note: Enabling GFPGAN will require more GPU memory")
parser.add_argument("--gfpgan_upscale",
type=int,
default=2,
help="The final upsampling scale of the image. Default: 2. Only used if --gfpgan is specified")
parser.add_argument("--gfpgan_bg_upsampler",
type=str,
default='realesrgan',
help="Background upsampler. Default: None. Options: realesrgan, none. Only used if --gfpgan is specified")
parser.add_argument("--gfpgan_bg_tile",
type=int,
default=400,
help="Tile size for background sampler, 0 for no tile during testing. Default: 400. Only used if --gfpgan is specified")
parser.add_argument("--gfpgan_model_path",
type=str,
default='experiments/pretrained_models/GFPGANv1.3.pth',
help="indicates the path to the GFPGAN model, relative to --gfpgan_dir. Only used if --gfpgan is specified")
parser.add_argument("--gfpgan_dir",
type=str,
default='../gfpgan',
help="indicates the directory containing the GFPGAN code. Only used if --gfpgan is specified")
return parser
def create_cmd_parser():
parser = argparse.ArgumentParser(description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12')
parser.add_argument('prompt')
parser.add_argument('-s','--steps',type=int,help="number of steps")
parser.add_argument('-S','--seed',type=int,help="image seed")
parser.add_argument('-n','--iterations',type=int,default=1,help="number of samplings to perform (slower, but will provide seeds for individual images)")
parser.add_argument('-b','--batch_size',type=int,default=1,help="number of images to produce per sampling (will not provide seeds for individual images!)")
parser.add_argument('-W','--width',type=int,help="image width, multiple of 64")
parser.add_argument('-H','--height',type=int,help="image height, multiple of 64")
parser.add_argument('-C','--cfg_scale',default=7.5,type=float,help="prompt configuration scale")
parser.add_argument('-g','--grid',action='store_true',help="generate a grid")
parser.add_argument('-i','--individual',action='store_true',help="generate individual files (default)")
parser.add_argument('-I','--init_img',type=str,help="path to input image for img2img mode (supersedes width and height)")
parser.add_argument('-f','--strength',default=0.75,type=float,help="strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely")
parser.add_argument('-G','--gfpgan_strength', default=0.5, type=float, help="The strength at which to apply the GFPGAN model to the result, in order to improve faces.")
# variants is going to be superseded by a generalized "prompt-morph" function
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
parser.add_argument('-x','--skip_normalize',action='store_true',help="skip subprompt weight normalization")
return parser
if __name__ == "__main__":
main()