InvokeAI/invokeai/app/invocations/math.py
psychedelicious ec0f6e7248 chore: black
2023-09-13 16:50:25 +10:00

232 lines
8.9 KiB
Python

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import numpy as np
from typing import Literal
from invokeai.app.invocations.primitives import IntegerOutput, FloatOutput
from pydantic import validator
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0")
class AddInvocation(BaseInvocation):
"""Adds two numbers"""
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=self.a + self.b)
@invocation("sub", title="Subtract Integers", tags=["math", "subtract"], category="math", version="1.0.0")
class SubtractInvocation(BaseInvocation):
"""Subtracts two numbers"""
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=self.a - self.b)
@invocation("mul", title="Multiply Integers", tags=["math", "multiply"], category="math", version="1.0.0")
class MultiplyInvocation(BaseInvocation):
"""Multiplies two numbers"""
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=self.a * self.b)
@invocation("div", title="Divide Integers", tags=["math", "divide"], category="math", version="1.0.0")
class DivideInvocation(BaseInvocation):
"""Divides two numbers"""
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=int(self.a / self.b))
@invocation("rand_int", title="Random Integer", tags=["math", "random"], category="math", version="1.0.0")
class RandomIntInvocation(BaseInvocation):
"""Outputs a single random integer."""
low: int = InputField(default=0, description="The inclusive low value")
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=np.random.randint(self.low, self.high))
@invocation(
"float_to_int",
title="Float To Integer",
tags=["math", "round", "integer", "float", "convert"],
category="math",
version="1.0.0",
)
class FloatToIntegerInvocation(BaseInvocation):
"""Rounds a float number to (a multiple of) an integer."""
value: float = InputField(default=0, description="The value to round")
multiple: int = InputField(default=1, ge=1, title="Multiple of", description="The multiple to round to")
method: Literal["Nearest", "Floor", "Ceiling", "Truncate"] = InputField(
default="Nearest", description="The method to use for rounding"
)
def invoke(self, context: InvocationContext) -> IntegerOutput:
if self.method == "Nearest":
return IntegerOutput(value=round(self.value / self.multiple) * self.multiple)
elif self.method == "Floor":
return IntegerOutput(value=np.floor(self.value / self.multiple) * self.multiple)
elif self.method == "Ceiling":
return IntegerOutput(value=np.ceil(self.value / self.multiple) * self.multiple)
else: # self.method == "Truncate"
return IntegerOutput(value=int(self.value / self.multiple) * self.multiple)
@invocation("round_float", title="Round Float", tags=["math", "round"], category="math", version="1.0.0")
class RoundInvocation(BaseInvocation):
"""Rounds a float to a specified number of decimal places."""
value: float = InputField(default=0, description="The float value")
decimals: int = InputField(default=0, description="The number of decimal places")
def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(value=round(self.value, self.decimals))
INTEGER_OPERATIONS = Literal[
"Add A+B",
"Subtract A-B",
"Multiply A*B",
"Divide A/B",
"Exponentiate A^B",
"Modulus A%B",
"Absolute Value of A",
"Minimum(A,B)",
"Maximum(A,B)",
]
@invocation(
"integer_math",
title="Integer Math",
tags=[
"math",
"integer",
"add",
"subtract",
"multiply",
"divide",
"modulus",
"power",
"absolute value",
"min",
"max",
],
category="math",
version="1.0.0",
)
class IntegerMathInvocation(BaseInvocation):
"""Performs integer math."""
operation: INTEGER_OPERATIONS = InputField(default="Add A+B", description="The operation to perform")
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
@validator("b")
def no_unrepresentable_results(cls, v, values):
if values["operation"] == "Divide A/B" and v == 0:
raise ValueError("Cannot divide by zero")
elif values["operation"] == "Modulus A%B" and v == 0:
raise ValueError("Cannot divide by zero")
elif values["operation"] == "Exponentiate A^B" and v < 0:
raise ValueError("Result of exponentiation is not an integer")
return v
def invoke(self, context: InvocationContext) -> IntegerOutput:
# Python doesn't support switch statements until 3.10, but InvokeAI supports back to 3.9
if self.operation == "Add A+B":
return IntegerOutput(value=self.a + self.b)
elif self.operation == "Subtract A-B":
return IntegerOutput(value=self.a - self.b)
elif self.operation == "Multiply A*B":
return IntegerOutput(value=self.a * self.b)
elif self.operation == "Divide A/B":
return IntegerOutput(value=int(self.a / self.b))
elif self.operation == "Exponentiate A^B":
return IntegerOutput(value=self.a**self.b)
elif self.operation == "Modulus A%B":
return IntegerOutput(value=self.a % self.b)
elif self.operation == "Absolute Value of A":
return IntegerOutput(value=abs(self.a))
elif self.operation == "Minimum(A,B)":
return IntegerOutput(value=min(self.a, self.b))
else: # self.operation == "Maximum(A,B)":
return IntegerOutput(value=max(self.a, self.b))
FLOAT_OPERATIONS = Literal[
"Add A+B",
"Subtract A-B",
"Multiply A*B",
"Divide A/B",
"Exponentiate A^B",
"Absolute Value of A",
"Minimum(A,B)",
"Maximum(A,B)",
]
@invocation(
"float_math",
title="Float Math",
tags=["math", "float", "add", "subtract", "multiply", "divide", "power", "root", "absolute value", "min", "max"],
category="math",
version="1.0.0",
)
class FloatMathInvocation(BaseInvocation):
"""Performs floating point math."""
operation: FLOAT_OPERATIONS = InputField(default="Add A+B", description="The operation to perform")
a: float = InputField(default=0, description=FieldDescriptions.num_1)
b: float = InputField(default=0, description=FieldDescriptions.num_2)
@validator("b")
def no_unrepresentable_results(cls, v, values):
if values["operation"] == "Divide A/B" and v == 0:
raise ValueError("Cannot divide by zero")
elif values["operation"] == "Exponentiate A^B" and values["a"] == 0 and v < 0:
raise ValueError("Cannot raise zero to a negative power")
elif values["operation"] == "Exponentiate A^B" and type(values["a"] ** v) == complex:
raise ValueError("Root operation resulted in a complex number")
return v
def invoke(self, context: InvocationContext) -> FloatOutput:
# Python doesn't support switch statements until 3.10, but InvokeAI supports back to 3.9
if self.operation == "Add A+B":
return FloatOutput(value=self.a + self.b)
elif self.operation == "Subtract A-B":
return FloatOutput(value=self.a - self.b)
elif self.operation == "Multiply A*B":
return FloatOutput(value=self.a * self.b)
elif self.operation == "Divide A/B":
return FloatOutput(value=self.a / self.b)
elif self.operation == "Exponentiate A^B":
return FloatOutput(value=self.a**self.b)
elif self.operation == "Square Root of A":
return FloatOutput(value=np.sqrt(self.a))
elif self.operation == "Absolute Value of A":
return FloatOutput(value=abs(self.a))
elif self.operation == "Minimum(A,B)":
return FloatOutput(value=min(self.a, self.b))
else: # self.operation == "Maximum(A,B)":
return FloatOutput(value=max(self.a, self.b))